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Abstract

This work investigates the state of the art in hard disk cryptography. As the choice of
the cipher mode is essential for the security of hard disk data, we discuss the recent
cipher mode developments at two standardisation bodies, NIST and IEEE. It is a
necessity to consider new developments, as the most common cipher mode – namely
CBC – has many security problems. This work devotes a chapter to the analysis of
CBC weaknesses.

Next to others, the main contributions of this work are (1) efficient algorithms
for series of multiplications in a finite field (Galois Field), (2) analysis of the security
of password-based cryptography with respect to low entropy attacks and (3) a design
template for secure key management, namely TKS1. For the latter, it is assumed
that key management has to be done on regular user hardware in the absence of
any special security hardware like key tokens. We solve the problems arising from
magnetic storage by introducing a method called anti-forensic information splitter.

This work is complemented by the presentation of a system implementing a variant
of TKS1. It is called LUKS and it was developed and implemented by the author of
this work.
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Preface

I got involved with hard disk cryptography for the first time in the year 2000.
This was much too early, since the regular desktop processors were not able
to fulfil my performance expectations. Two years later I repeated my attempt
to encrypt my data by default, this time with loop-AES, a high performance
encryption package for Linux. But due to its unrefined coding style, next
to the author’s dislike for cooperation, the code was never included into any
mainstream Linux project.

I have always been a fan of integration. For my personal projects, I could
say, I wanted my work to be part of something bigger and to be useful to the
community. But to be honest, I cooperate with bigger projects like Linux distri-
butions or the Linux kernel primarily, because it takes maintenance work away
from me. Otherwise, I would have to reintegrate my work with all components
when new versions are released. Therefore, I started to put my efforts into
another crypto project, which was more likely to be included into mainstream
Linux, named “kerneli”.

With the advent of Linux 2.6 in 2003 and after having gained experience
in how to lobby my code into the Linux kernel, cryptoloop was included into
the new release, and the Linux users received a hard disk encryption ready
kernel for the first time. cryptoloop was my port based on the loop back device
driver from a former kerneli component. But the loop back driver had many
unsolved problems attached, and half a year later Christophe Saout presented
his superior dm-crypt implementation that was based on a new block device
layer called device-mapper. Recognising this, I readjusted my road map and
concentrated my efforts on dm-crypt.

In the first quarter of 2004, Jari Ruusu, the author of loop-AES, imple-
mented the water marking attack against the CBC on-disk format both –
cryptoloop and dm-crypt – were using. The attack was not taken seriously,
especially not by me, as Jari Ruusu had no good reputation and was known
to spread more confusion than facts. After new threat models had shown that
this attack can be relevant in some situations, I invented ESSIV to remedy the
problem. Unfortunately, most Linux users were not well educated with respect
to cryptography and were confused from the mixture of correct and unobjective
claims Ruusu was still posting to the Linux mailing list.

I started to write a full-disclosure document on all known problems my
implementation had. The primary intention was to provide information to the
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vi PREFACE

Linux users. But this undertaking lead me much farer. I stumbled consecu-
tively into the world of SISWG and their alternative cipher modes. Stunned
by the variety of flaws I collected for CBC, I was eager to start using the
new SISWG modes. Until now, I have submitted many patches to the Linux
developers for implementing my favourite of the SISWG modes, LRW-AES.
Unfortunately, the Linux kernel virtual memory subsystem is a pure disaster.
I refused to create an unaesthetic workaround for its limitations, as my fellow
developers requested, and so I stopped my development. Unless this problems
are cleared up, there will be no working LRW implementation any time soon
for Linux. In fact, there will be no other hard disk solution operating with a
SISWG cipher mode any time soon, as my implementation efforts were the only
attempt (known to me) to implement them. So, the user has no other option
than to use CBC and its probably secure (or not) variants that are included
with loop-AES and TrueCrypt.

Probably more important than cipher modes is password management. A
big step towards tighter security in this field is achieved with my own software
I baptised LUKS. This paper presents the theoretic foundations of LUKS in
Chapter 5, “Password Management”, and gives a tour of its concrete imple-
mentation in Chapter 6.

The following work founds on three years of practical experience with usage
and programming of encryption systems. I implemented most of the advised
solutions on my own, and some of them are already available with default
installations.

Contributions of this work

1. mathematical primer for Galois Field algorithms,

2. development of specialised algorithms for multiplicative sequences in Ga-
lois Fields,

3. analysis of NIST cipher modes with respect to applicability for hard disk
encryption,

4. presentation of the Anti-forensic Information Splitter,

5. development and analysis of a technological growth model for quantifying
PBKDF2 security,

6. Template Key Setup 1 (TKS1), a guideline for designing secure key man-
agement systems,

7. case study of a hard disk encryption system incorporating TKS1, namely
Linux Unified Key Setup (LUKS).
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Chapter 1

Introduction

Data encryption has been used for individual precious documents in the past.
With the advent of more powerful desktop processors in the last decade, the
data throughput of ciphers surpassed that of hard disks. Hence, encryption is
no longer a bottle neck, and regular users become more interested in the topic
of hard disk encryption.

Modern operating systems that utilise virtual memory swapping and tem-
porary files make tracking and confining sensitive data hard. To relieve the user
of controlling every program’s swapping behaviour precisely, the encryption of
the hard disk as a whole is a comfortable option. This paper is not about the
encryption of a single file, but about the encryption of the whole hard disk in a
transparent way. Usually, the file system rests on a virtual block device, which
is encrypted in a way transparent to the file system and its users.

Before we discuss several cipher designs, we give a primer of the ingredients
used in cryptography. This includes Galois Field theory and algorithms for
its use in silicon. Readers familiar with these techniques are invited to skip
Chapter 2.

A hard disk encryption designer is flooded with choices for cipher settings.
The underlying cipher choice is more or less clear: AES is the dominant and
most analysed cipher at the time. But when it comes to cipher modes, there
is no such simple and clear decision. The NIST consideration list [NIS05] for
cipher modes counts 14 cipher modes suitable for encryption. The Security
in Storage Working Group, SISWG, has been founded by IEEE to find and
standardise a set of cipher modes especially suited for hard disk encryption.
In Chapter 3, we will take a tour of the traditional cipher modes, and the new
modes proposed by NIST and SISWG.

In current hard disk encryption designs, CBC is the most used cipher mode.
Unfortunately, one has to say. The list of problems associated with CBC is that
long that this paper devotes the entire Chapter 4 to them. These problems are
not new, but CBC is used mostly because of the lack of alternatives.

The other half of this work is devoted to password management. A feature
missing from the most common designs is the ability to change passwords. All

1



2 CHAPTER 1. INTRODUCTION

cipher blocks on the encrypted partitions are keyed with a single user password,
and a password change would require the re-encryption of the whole disk. Of
course this is not a desired property. By introducing key hierarchies, a chain
of keys can be created to remedy the problem.

A key hierarchy requires additional storage on disk. Care has to be taken
that this storage can be purged when needed. For instance, when the user
decides to delete a password, the respective key in the key storage has to
be destroyed securely. This is not as easy as it may seem. The firmware of
a modern hard disk is programmed to preserve data. When it detects that
a sector is about to become unreadable by an excessive read error rate, the
firmware secures the content to a reserved disk area. The original sector is
then unaccessible through the regular disk interface, so the deletion of the
original content is infeasible. We will introduce a method to artificially inflate
information, thus reducing the statistical chance, that the information ends up
in a backup disk section. We will call this technique anti-forensic information
splitting.

S-Keys, USB sticks or special key tokens can be used to carry additional key
material. But most users do not want to invest extra time or money in buying
such products. Thus, most encryption solutions have to rely solely on the
password as key information. The problem is that user passwords are usually
short, too short to contain enough entropy to match the length of the keys
derived from them. By iterative hashing, the lack of entropy can be overcome,
and the feasibility of dictionary attacks due to entropy weak passwords can
be partially offset. As concrete solution, PBKDF2 is considered as method for
password deduction.

As case study for a well-designed hard disk encryption system we will have
a look at LUKS. The design of LUKS includes many concepts introduced in
this work, and was solely developed by the author of this work. LUKS is
short for “Linux Unified Key Setup” and tries to replace home-grown hard
disk solutions with a secure standard. LUKS is not a theoretical toothless
“paper tiger”, but a real stable project, which can downloaded and used in
production environments. Chapter 6 gives a tour of this system.



Chapter 2

Design ingredients

The subjects presented in this chapter are common buildings blocks for cryp-
tography. Readers familiar with these concepts are invited to skip this chapter.

First, we define the three commonly used data representations, then we
investigate Galois Fields along with algorithms to handle them in silicon. The
chapter is finished by a discussion of Gray Codes.

2.1 The many faces of n

Data structures used in computers have a limited numeric domain, for two
reasons: first, memory is limited by design, second, dynamic data structures
require a substantial amount of overhead processing too costly for cryptogra-
phy.

To manipulate data structures, we need operators. Operators are always
tied to a certain data structure even if it appears that some operators exist
independently from a data structure. For instance, the addition operator +
defined over N shares many properties with the + operator defined over Z2 –
associativity, commutativity – however + in Z2 is self inverse, that is addition
is equal to subtraction in Z2. This is not true for N.

In cryptography, we encounter integer, binary and polynomial operations,
and each set of operations has its own interpretation of data, hence its own data
structure. The off-the-shelf definitions for integer and polynomial operations
are not usable in algorithms operating in silicon. The reason is that these op-
erations assume that the underlying mathematical structure is infinitely large.
There is little hope for finding a way to represent an infinitely large mathemat-
ical structure in a finite data structure.

Therefore, we need to refine these operations to work on structures with
a finite size. Integer operations can be refined quickly: we assume all integer
operations to be carried out modulo p, which possesses the form p = 2b, where
b stands for the numbers of bits used in the representation. This refinement
converts operators defined over N to operators defined over Zp. Whenever we
refer to an integer operation in this work, we actually mean its Zp refinement.

3



4 CHAPTER 2. DESIGN INGREDIENTS

With a bit of care, the same trick works for polynomial operations, but
before we discuss this in the next section, we would like to define bijective
mappings between the domain of integers (Zp), binary numbers (vector over
Z2) and polynomials (polynomial ring over Z2).

If n is an integer, that is n ∈ Z2b , there is exactly one element in the domain
of vectors over Z2 associated with n. (nb−1, nb−2, . . . n1, n0) is the vector of bits,
where

n =
b−1∑
i=0

ni 2i

holds true. We call this vector a binary number. This definition gives a bijective
mapping between integer numbers and binary numbers. We define n0 to be
the least significant bit, while nb−1 is the most significant bit. We use LSB(n)
to refer to n0, and MSB(n) to refer to nb−1.

We will make heavy use of Galois Fields later. Galois Field operators are
defined utilising polynomial operations. As binary data structures are the na-
tive structures found in computers, we need an interpretation of a binary vector
as a polynomial. We define that for the vector of bits (nb−1, nb−2, . . . n1, n0),
there is an associated polynomial over the indeterminate x possessing the form

nb−1 xb−1 + nb−2 xb−2 + · · ·+ n1 x + n0

Notice that we have defined a bijective mapping between the integer do-
main and domain of polynomials, by defining two bijective mappings to the
intermediate domain of binary vectors. Hence, all three representations can
be used completely interchangeably, as each relationship is bijective. All three
representations contain the same amount of information. We will use poly(n)
to denote a function that is the map from the ring of integers to the ring of
polynomials, as defined by the two bijective mappings above.

Sometimes, only a subset of bits is needed. We define a bit slice operation
on n, that is represented by n〈k, i〉, k < i, and is defined as the integer m
associated with the bits {mj}, where

mj =

{
nj k ≤ j ≤ i

0 else

An equal definition is given by

n〈k, i〉 =
i∑

j=k

nj 2j

2.2 Galois Field arithmetic

Before we explain the reasons for using Galois Fields, we first have to recapit-
ulate, what the benefits are of carrying out operations in a field, and why it is



2.2. GALOIS FIELD ARITHMETIC 5

desirable to choose a field as the underlying structure. Therefore, we restate
the field properties.

A field is an algebraic structure 〈A, ◦, ?〉 defined over a set A and two
operations. In a field, the operations ◦ and ? have the properties of

closure: A×A → A, that means: all results of both operators are in A.

associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c), and (a ? b) ? c = a ? (b ? c)

commutativity: a ◦ b = b ◦ a, as well as a ? b = b ? a

Furthermore, the ? operation is distributive over ◦.

distributivity: (a ◦ b) ? c = (a ? c) ◦ (b ? c)

For both operations, there is a neutral element (0 for ◦, 1 for ?).

Neutral element: A neutral element with respect to an operation will have
no effect on any arbitrary element, if applied with this operation. More
formally,

∃ 0 ∈ A : ∀a ∈ A : a ◦ 0 = a (2.1)
∃ 1 ∈ A : ∀a ∈ A : a ? 1 = a (2.2)

Inverse elements: Both, ◦ and ? have neutral elements, and all elements
(except the neutral of ◦) have inverse elements for ◦ and ?.

∀a ∈ A : ∃b ∈ A : a ◦ b = 0 (2.3)
∀a ∈ A \ {0} : ∃b ∈ A : a ? b = 1 (2.4)

It is important to cryptography to have inverse elements, because decryp-
tion works mostly by reverting all encryption operations, that is applying all
inverse elements. The two operations ◦ and ? are usually similar to addition
and multiplication. The rational numbers Q form a field with respect to those
operations, and without knowing, most people use the field 〈Q,+,×〉 for their
daily business.

Unfortunately, the rational numbers cannot be used for computers. The
cardinality of Q is infinite. Hence, it is impossible to use the rational numbers
as a base set for a field in a computer implementation, where any representation
is limited to a fixed precision. Fields with a finite number of elements are needed
here.

We assume the following statement without proof:

Proposition 1 If p is prime, then the residual classes of p form a field.

The insight of this statement can be demonstrated, when we investigate a
subset Zp of the set of natural numbers N, {0, 1, . . . , p− 1}. We define +

:
to be
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the regular integer addition, but carried out modulo p to achieve closure. The
same is done for ×

:
.

a +
:

b = a + b mod p

The subset Zp in conjunction with these two operations forms a field
〈Zp,+

:
,×

:
〉. This field construction works only for primes. The co-domains

used in computer science are bit oriented and therefore have sizes of the form
2η. This is no prime for any η > 1, and hence integer operations modulo 2η do
not form a field. Another approach is needed.

Proposition 2 If F is a field, the set F[x] of polynomials over the indeter-
minate x with coefficients out of F forms a field with respect to polynomial
addition and polynomial multiplication.

If F is a finite field, then an infinite field is obtained by the construction
method of Proposition 2, as the definition does not limit the order of the
polynomial in any way. What is needed is a reduction element that limits
the resulting polynomial in a similar way as a prime does for integers. An
irreducible polynomial is for polynomials what a primes is for integers. Primes
and irreducible polynomials are elements of a ring that cannot be constructed
with the help of the multiplication operation and any combination of other
ring elements. This at the same time implies that a reduction with such a
polynomial will always result in an algebraic structure with uniquely defined
multiplicative inverse for all its elements, namely a field.

Definition 1 A Galois Field is a finite field defined over an arbitrary power
of a prime, pη. The notation to capture a Galois Field with cardinality pη over
the indeterminate x and a reduction polynomial r is GF (pη)|r[x].

All elements of GF(pη) can be represented as polynomials with a maximum
order n − 1. For a field GF(pη) to be unambiguously defined, it must be
associated with an irreducible polynomial of order n, which is also known as
the reduction polynomial. Given two elements a, b ∈ GF(pη)|r[x], the field
operations ⊕ and ⊗ are defined as the respective polynomial operation + and ×
carried out under mod r. Hence,

a⊕ b = a + b mod r

a⊗ b = a× b mod r

The polynomial addition modulo r is equivalent to an unbounded polyno-
mial addition. This can be verified by looking at

(aη−1x
η−1 + . . . a1x + a0) ⊕

(bη−1x
η−1 + . . . b1x + b0) mod (rηxη + . . . r1x + r0) (2.5)
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which can be reordered as,

(aη−1 + bη−1)xη−1 + (aη−2 + bη−2)xη−2 + . . .

+ (a1 + b1)x + (a0 + b0) mod (rηxη + . . . r1x + r0) (2.6)

The order of the result of this polynomial addition is max
(
ord(a), ord(b)

)
. If

both, a and b, have an order less than n, there is no reduction of the order via
the modulo operation. Hence, modulo bounded polynomial addition is equal
to unbounded polynomial addition.

As we will see in the next paragraphs, polynomial addition in GF(2η) can be
carried out with a single XOR operation1. The field’s multiplication operation
is not as easy to implement without further refinements.

c = a⊗ b (2.7)

is defined as the polynomial multiplication,

c = (aη−1x
η−1 + . . . a1x + a0) ×

(bη−1x
η−1 + . . . b1x + b0) mod (rηxη + . . . r1x + r0) (2.8)

Compared to addition, a polynomial multiplication is more time consuming,
not just for pen and paper but also for silicon. What is additionally unpleasant
for silicon – when computing the unrefined equation (2.8) – is first, the space for
holding coefficients has to be extended to 2n, and second, the final polynomial
division imposed by the modulo operation is non-trivial and time consuming.
Fortunately, there are a few tricks that can save a lot of time when carrying
out Galois Field multiplications.

The first step towards better computability is to utilise the law of dis-
tributivity to split the multiplication (2.7) into a regular pattern. We start
by splitting off the coefficient of the lowest order and extracting x from the
remaining rest polynomial of b.

a⊗ b = a⊗ (bη−1x
η−1 + · · ·+ b1x + b0)

= a⊗ (bη−1x
η−1 + · · ·+ b1x)⊕ b0 a

= a⊗ (bη−1x
η−2 + · · ·+ b1)︸ ︷︷ ︸

remaining

x⊕ b0 a

The process is repeated for the remaining under-braced polynomial, until the
following form is reached:

((. . . ((

most inner︷ ︸︸ ︷
0⊕ bη−1 a)x ⊕bη−2 a) . . . )x⊕ b2 a)x⊕ b1 a)x⊕ b0 a

1This is the reason why the symbols for the field operation ⊕ and the XOR operation are
used as synonyms in literature. Many computer languages use ˆ as bit-wise XOR operator.
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As you can see the order of x increases steadily from the most inner parenthesis
to the most outer parenthesis. The pattern of this expression can be refined
to a recursive definition. A recursion is a form of iterative processing, which is
a well suited implementation. To avoid confusion with coefficient indices, we
use a superscript instead of a subscript to denote the recursion index, and to
remind us that this is not a power, we use parenthesis.

c(0) = 0

c(i) = c(i−1) x⊕ bη−i a (2.9)

The expression c(η) mod r is equal to (2.8). What is unsolved until now, is
the explosion of the polynomial order and the required division. This can be
solved by using the following modulo laws

a + b mod r = (a mod r + b mod r) mod r

The left side of this law is equal to the definition of the ⊕ operation, while the
right side is equal to (a mod r ⊕ b mod r). After applying this to (2.9), we
obtain

c(i) =
(
c(i−1) x mod r

)
⊕ (bη−i a mod r) (2.10)

There is little to worry about the order of the last term bη−i a as this is a scalar
multiplication having no effect on the order. Remember r is a polynomial, and
it is used for reducing the order of a polynomial in the first place. The term
c(i−1)x mod r from (2.10) is the simplest case, where a modulo operation
might happen. Before we have a look at the modulo mechanics at work here,
we remember the division definition, that also defines modulo results. As given
in [Mes82],

Proposition 3 If s and r are two polynomials over a field, then there are two
unique polynomials p and q, where q < r, so that s = p r + q.

r is the reduction polynomial and q is the polynomial remainder we are
interested in. Therefore, we transform the equation to give q as a function of
s.

q = s− p r

Assume s to be the result of a polynomial multiplication, a⊗ x, that needs
to undergo a modulo reduction. We fill in s = a⊗ x and obtain,

q = (aη−1x
η−1 + aη−2x

η−2 + · · ·+ a1x + a0) x− p r

q = (aη−1x
η + aη−2x

η−1 + · · ·+ a1x
2 + a0x)− p r (2.11)

For polynomials, the requirement q < r from the division algorithm’s definition
implies that ord(q) < ord(r). As ord(r) = n, the order of q has to be smaller
than n. Without the subtraction, this is violated in the last equation, as there
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is a term aη−1x
η. Therefore, we have to use the subtraction to make the

coefficient for xη vanish. This is obtained by

p =
aη−1

rη
(2.12)

By defining p this way, it ensures that the coefficients for xη, aη−1 and rη,
match in the subtraction. Hence, the subtraction will cause the coefficient of
xη to disappear, thus the result will be a polynomial with an order of maximum
n− 1 and thus a valid element of the finite field. Equation (2.12) also implies
that p degenerates into an element of the underlying field. To sum up our
findings,

a⊗ x = (aη−1x
η + aη−2x

η−1 + · · ·+ a1x
2 + a0x)− aη−1

rη
r (2.13)

We have silently introduced the subtraction operation in our equations
(2.11) and (2.13), which in fact does not exist in a field. The subtraction oper-
ation is the inverse operation of addition and can be synthesised by adding the
inverse element associated with addition. The same applies to the quotient used
in the calculation of p, (2.12), which can be synthesised by the multiplication
with the multiplicative inverse element.

In practise, r is usually given as a monic polynomial, requiring rη = 1,
therefore p will be equal to aη−1 when considering (2.12). Assuming this, a
substitution of (2.13) into (2.10) yields

c(i) =
(
c
(i−1)
η−2 xη + c

(i−1)
η−3 xη−1 + · · · + c

(i−1)
0 x

)
	 c

(i−1)
η−1 r ⊕ (bη−i a) (2.14)

Remember that the superscript denotes the recursion index, while the subscript
refers to the coefficient index. So, the term c

(i−1)
η−1 refers to the coefficient of

xη−1 in the (i − 1)th recursion result. We used the symbol 	 instead of the
subtraction sign to emphasise that this is a field operation. Notice that this
equation does not include any mod operations and therefore, it is the well
suited for the algorithms we develop in the next section.

2.3 Algorithms for GF(2η)

The most common Galois Fields, you encounter in this work, are GF(2),
GF(28), and GF(2128). The Galois Field GF(2) corresponds to the field, which
is formed by the residue classes Z2. The results for the field operations ⊕ and
⊕ are easily storable in a lookup table for field sizes up to 28. But for GF(2128),
we need algorithms to calculate the results.

As most Galois Fields in this paper are defined over the prime 2, it is useful
to investigate its speciality for hardware. Equation (2.6) shows, a polynomial
addition can be carried out by adding the coefficients of all powers of x directly.
A field GF(2η) has η coefficients out of GF(2). An addition in GF(2) is equiv-
alent to the exclusive-or operation found in Boolean logic, more commonly
denoted as XOR in computer sciences.
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XOR 0 1

0 0 1
1 1 0

If the coefficients are stored in a vector and the coefficients are bits, the
polynomial becomes presentable by a bit vector. In many architectures we find
instructions that can carry out a XOR operation on two bit vectors matching
the ith element of one vector with the ith element in the other vector. With
the help of these instructions, it is possible to do a Galois Field addition with
a single instruction. In this section, we assume that all polynomials are over
the field Z2 and are represented by a bit vector.

Polynomial multiplication has been well prepared for computer implementa-
tions by the refinement to a recursive function, that also includes the reduction
polynomial. For p = 2, the reduction equation (2.13) becomes even simpler
as the coefficient of xη−1 is either 0 or 1, that is the term xη−1 is present or
not. In case of aη−1 = 0, no subtraction has to be done at all, as a mul-
tiplication with x will not result in a term xη. If aη−1 = 1, the reduction
polynomial is subtracted exactly once. So the modulo reduction can be imple-
mented as a conditional subtraction when aη−1 = 1 and a shift operation. Bit
shift operations are available in almost any modern architecture. Subtraction
can be replaced by addition, as both operations are interchangeable in GF(2).
Convince yourself by looking at the XOR table.

In the following function definition, it is assumed that r is a monic polyno-
mial, so rη = 1 at all times, which makes storing this coefficient dispensable.
Omitting the coefficient for xη from r makes r of the order η − 1, which is
convenient, as in this form, it can be stored with the same precision and in the
same data structure as a regular η − 1 order polynomial.

For clarity, we assume for all following function definitions that η is not
passed explicitly, but is implicitly available.

Listing 2.1: xtime: multiplication with x and modulo reduction

xtime ( a ) :
i f aη−1 = 1 :

return ( a << 1) ⊕ r
else

return a << 1

xtime implements a⊗ x. Using this function in the recursive definition of
f (2.9), we obtain a computable function for the polynomial multiplication.

Listing 2.2: base algorithm, xtime-version

c ( a , b ) : return c ’ ( a , b , η )

c ’ ( a , b , i ) :
i f i = 0 :

return 0
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return xtime ( c ’ ( a , b , i −1)) ⊕ bη−i a

c is used to start the recursion and c ’ does the actual computation. The
code of c ’ closely resembles (2.9). We have used a simplified version for c ’ here.
The scalar multiplication bn−i a at the return statement needs to be expanded
for a real implementation. But bη−i is either 1 or 0, so we can replace it with
a conditional addition of a.

Listing 2.3: an implementable c’-recursion

c ’ ( a , b , i ) :
i f i = 0 :

return 0

p = xtime ( c ’ ( a , b , i −1))
i f bη−i = 1 :

return p ⊕ a
else

return p

This listing contains the first implementable Galois Field multiplication code
in this work. When this operation is needed infrequently, it is ok to choose
this implementation. But many cipher modes in the following chapters use
Galois Field multiplications extensively. Usually one of the operands is a fixed
polynomial and in that case, there is another technique to save CPU cycles.

The original definition of c = a⊗ b as given in (2.8) can be split up thanks
to the law of distributivity.

c = bη−1

(
a⊗ xη−1

)
⊕

bn−2

(
a⊗ xη−2

)
⊕

. . .

b1

(
a⊗ x

)
⊕

b0 a ⊕
0

Also, this is equation features a regular structure, which we can put into an
algorithm easily. A lookup table can store terms of the form a ⊗ xi, and this
algorithm can add the corresponding element when bi is 1. Given a GF(2η), it
is sufficient to store η terms of the form a ⊗ xi. We can calculate the lookup
table via the xtime function.

lookupTable[0] = a (2.15)
lookupTable[k] = xtime( lookupTable [k − 1]) (2.16)

The polynomial multiplication can now be programmed as:
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Listing 2.4: base algorithm, lookup table version

c ( lookupTable , b ) :
p ← 0
for i = 0 t i l l η−1 do {

i f bi = 1 :
p ← p ⊕ lookupTable [ i ]

}
return r

This optimisation is sufficient when the Galois Field multiplication is car-
ried out infrequently and one operand is fixed. But some cipher modes are
constructed in a way, that it is likely that related results are needed. This rela-
tion can be used to save a lot of processing. Without the following techniques,
cipher modes such as LRW-AES would have a serious disadvantage compared
to other modes.

2.4 Sequences of multiplications in GF(2η)

We anticipate a few things from the following chapters, so the reader under-
stands, why it is crucial to investigate these sequences. In LRW-AES, we will
see a design that will carry out a Galois Field multiplication with a fixed poly-
nomial a and poly(n), where poly(n) stands for the corresponding polynomial
to integer n as defined by the bijective mapping in Section 2.1. LRW-AES uses
the result of the GF multiplication in the encryption of the nth block.

Assume we use LRW-AES for hard disk encryption. When the block n is
accessed, the probability is high that the block n + 1 will be accessed too, as
hard disk access is rarely carried out isolated. In practise, this is also true for
much larger differences such as n + 255.2

Definition 2 An arithmetic sequence of a polynomial multiplication is the se-
ries a⊗ poly(n), a⊗ poly(n + 1), a⊗ poly(n + 2), . . . , a⊗ poly(n + k), where a
is a polynomial, n is an integer and n + k is an integer addition.

This section discusses an efficient way for generating such sequences.
When the underlying field has a size of 2128 and c from Listing 2.4 is used,

then 128 conditional XORs have to be carried out for every single element of
the arithmetic sequence. When LRW-AES accesses 256 hard disk blocks, this
means 32768 conditional XORs have to be done. At the end of this chapter, we
will present an algorithm that can do the same with just 383 XORs. That is
almost a hundredth of the original requirement. This ratio is improving, when
the sequence of multiplication results becomes longer.

2Linux uses a 4KB page cache structure. An LRW-AES block is 16 bytes wide, hence
there are 256 blocks in 4KB, which will be read all at once.
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n n3n2n1n0 a⊗ (poly(n)) a⊗ (poly(n + 1)⊕ poly(n))

0 0000 a⊗ (0) a⊗ (1)
1 0001 a⊗ (1) a⊗ (x + 1)
2 0010 a⊗ (x) a⊗ (1)
3 0011 a⊗ (x + 1) a⊗ (x2 + x + 1)
4 0100 a⊗ (x2) a⊗ (1)
5 0101 a⊗ (x2 + 1) a⊗ (x + 1)
6 0110 a⊗ (x2 + x) a⊗ (1)
7 0111 a⊗ (x2 + x + 1) a⊗ (x3 + x2 + x + 1)
8 1000 a⊗ (x3) a⊗ (1)
9 1001 a⊗ (x3 + 1) a⊗ (x + 1)

10 1010 a⊗ (x3 + x) a⊗ (1)
11 1011 a⊗ (x3 + x + 1) a⊗ (x2 + x + 1)
12 1100 a⊗ (x3 + x2) a⊗ (1)
13 1101 a⊗ (x3 + x2 + 1) a⊗ (x + 1)
14 1110 a⊗ (x3 + x2 + x) a⊗ (1)
15 1111 a⊗ (x3 + x2 + x + 1) a⊗ (x4 + x3 + x2 + x + 1)

Table 2.5: The many faces of n

2.4.1 Discussion

To get an idea of how such an algorithm might look like, we investigate an
integer sequence 0–15 and the corresponding polynomials. In Table 2.5, the
chosen sequence is tabulated. The first thing that comes into mind, when
looking at this table is that the surrounding a⊗ (. . . ) of the last two columns
are superfluous in this presentation. This is correct, and we will later strip
them with a trick, but before we do that, we need to grasp what we are actually
stripping.

Our algorithm candidates, that have to compute a⊗ poly(i) from a related
a ⊗ poly(n), can utilise the elements of the lookup table to switch individual
a⊗ xi elements on and off. You will see shortly, what is meant by “related”.

Have a look at Line 8 of Table 2.5. The result for Line 9 can be generated
with the help of a single XOR by adding a⊗1 to the result of Line 8. Likewise,
Line 10 can be generated by adding a⊗ x to the result of Line 8. Line 11 can
be computed by adding a ⊗ 1 to Line 10. In this tiny cutout, the saving is
relatively small, but imagine that n not only consist of 4 binary digits but 128.
If we use algorithm c, this implies 128 conditional XORs to generate Line 9.
But when we have the result of Line 8 at hand, we get along with a single XOR.
The same is true for Line 10. Compared to 128 XOR operations, this shortcut
has a huge saving potential. Let us investigate the systematic of this shortcut
and its prerequisites.

In this sequence, we have not considered lines 0 till 7. For i < 8, the
differences between lines i and i + 8 are constantly a ⊗ x3. Thus, Line 9 can
also be generated with the help of Line 1 and the lookup table element a⊗ x3.
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Likewise, Line 10 by using Line 2 and so on, until Line 15 is generated from
Line 7.

There is another case, where we can use a similar approach. For i < 4, the
differences between Line i and Line i + 4 are constantly a⊗ x2. For i < 2, we
can use Line i to get to Line i + 2 with the help of a⊗ x.

The reader might have already guessed the system behind this. It is possible
to use i to generate i + 2k by the use of a ⊗ xk. This is not surprising, as
the bit-wise difference between i and i + 2k is exactly at position k. This is
mirrored in the difference of a⊗ xk in the multiplication results of a⊗ poly(i)
and a⊗ poly(i + 2k).

Before we dive deeper into the subject, we conduct a restriction that will
radically simplify our view. Assume a to be fixed to the degenerated poly-
nomial 1. This is the identity element and any multiplication with it can be
stripped of our equations. But what actually simplifies our thinking is, that the
lookup table of a as defined in (2.16) will degenerate into simple binary masks.
The first element of the lookup table has only one non-zero coefficient, namely
a0. Any successive element will be computed by xtime, that will shift this
coefficient until the coefficient aη−1. When these polynomials are considered
in their binary representation, they will be simple binary masks of the form
0:η−k 1 0:k−1, or in other words, a binary vector that is zero except at position
k.

With this restriction, Listing 2.4 degenerates into a simply copy algorithm.
It scans all bits of bi and sets the respective bits in the returned polynomial p
as lookupTable [i] will have only the i-th bit set. This simplifies the bit rep-
resentations of the integer n and the polynomial a ⊗ poly(n) as both will be
equal. So, when we talk about generating n + 1 from n we only have to inves-
tigate how to change the bit pattern of n to get n + 1. Reconsider the case,
where we want to generate Line 10 from Line 8. Only the second last bit has
to be switched. This is equal to x. So for the development of algorithms, it
is sufficient to think of switching bits in n by the means of XOR operations.
When we have finished drafting an algorithm, we can lift the restriction for a
by replacing the lookup table.

Whenever the bit representations of the integer n and a⊗ poly(n) give the
same results, we should have no problem to immediately come up with a way
how to generate a ⊗ poly(n + 1) by using a ⊗ poly(n), because all we have
to do is inspect the bit-wise difference of n + 1 and n. We cannot use any
other operation than XOR to generate n+1 from n, as it is the only tool when
we switch to a lookup table for a later. So, all we have to do is to reverse
engineer the integer addition with the help of XOR operations, when we want
to generate a⊗ poly(n + 1) from a⊗ poly(n).

When we assume a to be equal to 1, we can strip a of the last two terms and
as the rest poly(n+1) and poly(n) is only an indicator for another representa-
tion of the integers n+1 and n, we will omit poly(..) too. Hence, we will speak
of generating n + 1 from n, when we actually mean generating a⊗ poly(n + 1)
from a⊗ poly(n).
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Integer addition features a carry logic, which we cannot easily reassemble
by flipping a single bit. Flipping single bits is all we can do, because in the
restricted view on the lookup table, all it contains are binary masks with a
single bit set. We either avoid the carry from happening – done in the last
few paragraphs – or we simulate the carry by modifying the lookup table. We
present two algorithm for both approaches. Both have their advantages and
disadvantages. This section will close with a hybrid version of both.

2.4.2 Algorithm for carry prevention

Following the ideas presented in the last section’s discussion, we can give a
recursive definition for multiplication sequence,

f0 = 0
fn = fn−2l ⊕ lookupTable [l] where l = blog2 nc (2.17)

This recursion pattern is irregular. For the lines 8 to 15 of Table 2.5, the
rounded logarithm stays constantly l = 3 and causes them to be generated
from lines 0 till 7 by the use of x3. How the whole table is generated with this
recursive definition is depicted in Figure 2.6.3

If we want to generate n results, but start from a polynomial different from
0, when can simply change f0 to – for instance – p. Thanks to the recursion
p will be added to all elements of fn. There is only one restriction for p. The
dlog2 ne lower order coefficients (and bits) must be zero, because otherwise it
would cause a carry which is not anticipated by this definition.

We formalise this requirement with the a l i g n function, a l i g n (p, 0) > n,
when n is the sequence length.

Listing 2.5: alignment determination
a l i g n (n , b ) :

for i ← 0 t i l l η − 1 do :
i f ni 6= b :

return i
return η

2.4.3 Algorithm for carry simulation

A major disadvantage of the recursive definition (2.17) is that it requires results
of previous calculations that might have been neither requested nor wanted.

While the difference for (n + 1) − n is trivially constant in the group of
natural numbers mod 2η, the differences between the polynomials poly(n + 1)
and poly(n) are not as regular. The reason for this is that subtraction in GF(2η)
is actually a field addition, and further, this operation is in fact equivalent to a
XOR operation. XOR does not feature any carry elements in contrast to integer
addition.

3In fact, we are talking about a⊗ xi when we replace the lookup table later.
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n n3n2n1n0 n⊕ (n + 1)

0 0000 0001
1 0001 0011
2 0010 0001
3 0011 0111
4 0100 0001
5 0101 0011
6 0110 0001
7 0111 1111
8 1000 0001
9 1001 0011

10 1010 0001
11 1011 0111
12 1100 0001
13 1101 0011
14 1110 0001
15 1111 -

Table 2.7: binary difference table

We need a way to reproduce the carry logic. Therefore, we investigate
the pattern that is induced by integer carry between successive elements. In
Table 2.7, we find that all differences have the form 0:n−k 1:k. Notice that the
number of closing ones in the XOR difference is equal to the number of least-
significant bits of n plus 1. In other words, it holds true for the index k of
0:n−k 1:k that

k = a l i g n (n, 1) + 1

We can use a second lookup table to include elements just of that form.
Translated into a polynomial, these difference patterns have the form

a⊗ poly(0:n−k+1 1:k+1) =
k⊕

i=0

a⊗ xi

By using elements of this lookup table, it is possible to compute steps like 3
to 4, or 7 to 8 from Table 2.7 in a single XOR operation. It works by choosing
the appropriate carry pattern by determining the numbers of least significant
1 bits. This yields the elegant recursive definition,

fn+1 = fn ⊕ lookupTableNeg[a l i g n (n, 1)] (2.18)

We term this lookup table to utilise negative logic, as most of the elements
are used to cancel out already present elements. The most striking example of
this is the step from 7 to 8.
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Listing 2.6: Single step via negative logic
s i n g l e S t ep (NArray , n , pos ) :

NArray [ pos ] ← NArray [ pos−1] ⊕
lookupTableNeg [ a l i g n (n , 0 ) ]

The essence of this recursion can be encoded into the s i n g l e S t ep function
of Listing 2.6.4 It is assumed that NArray is the array of calculations done
so far and has pos − 1 computed elements. The element at position pos − 1
contains the result for a⊗ poly(n− 1), and in general, the element at position
pos − i contains the result a ⊗ poly(n − i) (when pos − i ≤ 0). The array
element NArray[pos] is the target element, that should be filled with the new
polynomial multiplication result for a⊗ poly(n).

The s i n g l e S t ep function gives a very compact and implementable algo-
rithm for generating sequences of multiplication results. However, it still de-
pends on the base algorithm c to generate the first result in NArray[pos]. The
base algorithm c is still operating with the regular lookup table. To spare the
need for two lookup tables, the algorithm in Listing 2.4 can be restated to use
the negative-logic lookup table as well.

Listing 2.7: Base algorithm for negative logic
c (n ) :

r ← 0 , s ← 0
for i ← (η − 1) t i l l 0 do {

i f bi = s :
r ← r ⊕ lookupTableNeg [ i ]
s ← s ⊕ 1

}
return r

What is suboptimal about the s i n g l e S t ep function is, that it needs to
redetermine the alignment at every call. The expectation for the number of
iterations I of the loop in Listing 2.5 is,

E I =
η∑

i=1

i p(i) =
η∑

i=1

i
1
2i

= 2− η + 2
2η

Furthermore,
lim

η→∞
EI = 2

A multiplication according to the c function given in Listing 2.4, requires
η bit checks and on average η/2 conditional XORs. The s i n g l e S t ep function
does much better with 2 bit checks on average and 1 XOR operation. Although
these results are satisfactory, a final optimisation can be made.

4This algorithm uses the identity a l i g n (n + 1, 0) = a l i g n (n, 1).
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2.4.4 A hybrid algorithm

The advantage of avoiding carries is that the algorithm does not have to reselect
a polynomial from the lookup table by a l i g n , as l in (2.17) is constant most
of the time. The disadvantage is that in order to utilise the performance
gain due to a non-changing lookup polynomial it is necessary to generate a
series of results at once. Furthermore, the algorithm needs results of previous
calculations, and a proper alignment of them.

The advantage of the carry simulation is that it works without all these
prerequisites. It requires only n − 1 to be present to generate n. The disad-
vantage is this algorithm must inspect n at every step. This also implies that
n + 1 must be calculated via an integer addition, something which does not
have to be done for the carry prevention algorithm.

In a hybrid of these two algorithms, we try to get the best of both worlds.
We want to be able to start from any given n no matter what alignment it has.
We also want to use the speed of the carry prevention algorithm if a large set
of results is requested.

Before we can use the carry prevention algorithm, we have to give an imple-
mentation for it first. The recursion in (2.17) is using the regular lookup table.
With the alternative implementation of c in Listing 2.7, the implementation of
(2.17) would be the only component left that requires the regular lookup table.
We like to refine this recursion to use the negative lookup table, because so the
implementation is not forced to maintain two separate lookup tables.

Equation (2.17) can be rewritten by adjusting the indices of the recursion
and changing the lookup table.

fn = f2l+1−n ⊕ lookupTableNeg
[
l
]

(2.19)

How this recursion pattern unfolds is visualised in Figure 2.8. In contrast to
the version with the positive lookup table, the previous sequence results are
traversed backwards. This way we use the negative logic to cancel out any
unwanted polynomial coefficients.

In (2.19), l = blog2 nc does not change for every step of n. An algorithm
using this equation can rely on the fact that the rounded values log2 do not
change at every step unless n = 2i for any i ∈ N. The implementation makes
use of this fact by directly controlling i.

Listing 2.9: carry prevention
fromAlign (NArray , n , pos , l ) :

2 i f l > a l i g n (n , 0 ) :
return e r ror , a l ignment v i o l a t i o n

4
for i ← 0 t i l l l − 1 do :

6 poly ← lookupTableNeg [ i ]
for k ← 2i t i l l 2i+1 − 1 do :

8 NArray [ pos+k ] ←
NArray [ pos+2i − k ] ⊕ poly

10 }
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The algorithm is called fromAlign , because it requires n to be properly
aligned. Its parameter5 l specifies that 2l − 1 elements should be generated.
Second, there are no log2 computations in this algorithm. Because of the round-
ing, that takes place via the ceiling function for l, a loop can be constructed
from n = 2i to 2i+1, where the rounded log2 n is guaranteed to stay constant.
Hence, we do not need to compute log2 n as it is implicitly fixed to the current
value of i.

We give an example of an arithmetic multiplication sequence to visualise,
how fromAlign and s i n g l e S t ep can be mixed to produce a hybrid version
to take advantage of both of them. Assume that 21 results of the form a ⊗
poly(n), a⊗ poly(n + 1) . . . are requested, where n is equal to 1101100.

generate from generate what method number of
results

- 1101100 base algorithm 1
1101100 1101101 to 1101111 fromAlign 3
1101111 1110000 s i n g l e S t ep 1
1110000 1110001 to 1111111 fromAlign 15
1111111 10000000 s i n g l e S t ep 1

The base result a⊗poly(1101100) is generated by the base algorithm. Then
3 elements can be generated by fromAlign at once, then a s i n g l e S t ep call is
necessary. The next 15 elements can be generated by fromAlign , as the last
24 bits of 1110000 are zero. At 1111111 a s i n g l e S t ep call is needed to reach
100000000.

The switching process sketched in the table above can be formalised in the
algorithm of Listing 2.10. First, a base result is obtained in Line 2. Then
a check is made, if sufficient elements have been generated. The check is
made regularly at lines 14 and 21. Line 9 determines, if the first step is a
fromAlign call (Line 10) or from s i n g l e S t ep (Line 18). The loop’s task is to
call s i n g l e S t ep and fromAlign alternately, and advance the position pointer
correctly. The elements of NArray are aligned so that NArray[i] contains a⊗
poly(n + i).

This presentation is a compromise between optimisation and comprehen-
sion. A real algorithm would keep extra counter variables for n + pos and
length − pos. Also notice that this algorithm will eventually generate too
much results, as the fromAlign cannot be limited precisely in the given im-
plementation.

This section has digged deep into possible optimisations for Galois Field
multiplications when they are carried out in silicon. Even more optimisations
can be found in my real implementation of these algorithms, for instance, that

5A real implementation of this algorithm differs insofar that an additional variable is
added to control the precise length of elements, not as l aligned to 2l. Because adding these
checks complicates the control structure considerably, it is left out for pedagogic reasons
here.
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Listing 2.10: Multiplication sequence (hybrid)
GFMulSeq(NArray , n , l ength ) :

2 NArray [ 0 ] ← c (n)
pos ← 1

4 i f pos < l ength :
return

6
a l i g n ← a l i g n (n+pos , 0 )

8
i f ( a l i g n != 0 ) :

10 fromAlign (NArray , n+pos , pos , a l i g n )

pos ← pos + 2align

12
whi l e ( true ) :

14 i f pos < l ength :
return

16
a l i g n ← a l i g n (n+pos , 1 )

18 s i n g l e S t ep (NArray , n+pos , pos )
pos ← pos + 1

20
i f pos < l ength :

22 return

24 a l i g n ← a l i g n (n+pos , 0 )
fromAlign (NArray , n+pos , pos , a l i g n )

26 pos ← pos + 2align − 1

alignment determination is limited to η checks in total, as it can be assured
that the alignment is monotonously increasing.

Before we will dive into cipher modes in the next chapter, we will investigate
another method to speed up Galois Field multiplications. The approach is to
generate a permutation {hn} of N that reduces the step from a⊗ poly(hn) to
a⊗ poly(hn+1) to a single XOR operation.

2.5 Gray Code

Definition 3 A Gray Code is a sequence hi, such that

d(hi, hi+1) = 1 ∀i > 0

where d(x, y) is the Hamming Distance between x and y.

When we use a vector representation of bits, then this definition implies
that successive elements of a sequence must differ by exactly one bit. To
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n3n2n1n0 g3g2g1g0 poly(g) difference to prev. column

0000 0000 0 −
0001 0001 1 1
0010 0011 x + 1 x
0011 0010 x 1
0100 0110 x2 + x x2

0101 0111 x2 + x + 1 1
0110 0101 x2 + 1 x
0111 0100 x2 1
1000 1100 x3 + x2 x3

1001 1101 x3 + x2 + 1 1
1010 1111 x3 + x2 + x + 1 x
1011 1110 x3 + x2 + x 1
1100 1010 x3 + x x2

1101 1011 x3 + x + 1 1
1110 1001 x3 + 1 x
1111 1000 x3 1

Table 2.11: Gray Code difference table

demonstrate the implications, Table 2.11 contains a permutation of the entries
of Table 2.5 ordered as a valid Gray Code.

The advantage of using Gray Codes becomes visible immediately when the
last column is considered. The difference between any element has the form
xi, which is much more regular than the differences of Table 2.5.

Gray Codes are not unique and their actual sequence depends on the
method of generation. One of the generation methods is reflexive copying.
How this methods works is depicted in Figure 2.12. First, a sequence is taken
that is known to be a Gray Code. Then it is copied twice, once normally, and
the second time reflexive. Then two elements are chosen with the Hamming
Distance 1. The first element is prepended to the normal copy, and the second
element to the reflexive copy. The obtained sequence is a valid Gray Code.

In the figure, the element prepended to the normal copy is 0 and the other
is 1. The initial Gray Code sequence is also {0,1}. These are arbitrary choices.
Choosing 1 to be the first element, and 0 to be the second element for the re-
flexive part would also yield a valid Gray Code. However, there is no gain from
considering other permutations, and so we shall concentrate on the method
depicted in the figure, which generates the binary reflexive Gray Code6.

The sequence of natural numbers mi in binary form can be associated bijec-
tively with their binary reflected Gray Code, hi = brgc(mi). The Gray Code
g = brgc(n) is generated from the binary representation of number n. Given a
sequence of bits nknk−1 . . . n1n0 for the number n, the bits gkgk−1 . . . g1g0 of

6Sequence number A014550 in “The On-Line Encyclopedia of Integer Sequences” [AT&T]
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the reflexive binary code are generated by

gi = ni+1 + ni mod 2

The inverse can be computed by

ni =
∞∑

j=i

gj mod 2

Table 2.11 is generated with these equations. The verification of these
equations is left as an exercise to the reader.





Chapter 3

Cipher Modes

Hardly anyone uses a cipher as published. If this is the case, the cipher is said
to be used in ECB mode, Electronic Codebook Mode, but this mode does not
fully qualify as a cipher mode, because ECB rather denotes the absence of any
further design.

Normally, a cipher serves as a building block in an encryption design. The
way a cipher is utilised is called cipher mode. The advantage of a cipher
mode can be to obfuscate plaintext similarities, to relieve the user of block size
restrictions, or provide additional authentication capabilities. These benefits
come for a small computational price, and this is the reason why these designs
are so common.

This chapter will first have a look at the well known, and well analysed,
traditional cipher modes. The second part will examine more recent cipher
design, most notably the submissions to the “NIST - Modes Of Operation”
standardisation process and the work of the SIS Working Group of IEEE.
Despite the minor role of authentication algorithms, they are relevant for some
attack models. Thus, we will give the reader a brief overview of what is available
with respect to this topic.

Notation

We utilise the regular definition of a cipher. A cipher is an invertible function
E : P × K → C. P is the set of possible plaintexts, K the set of possible keys,
and C the set of possible ciphertexts. The inverse function with respect to the
argument P is called D, and fulfils

P = D(E(P,K),K) for all P ∈ P, and K ∈ K (3.1)

K will be omitted if clear from context. If not, the key will be added as subscript
to E, so E(P,K) = EK(P ).

The following convention is used to distinguish between block cipher en/de-
cryption operations and cipher mode en/decryption operations: E and D de-
note block cipher operations, while E and D represent cipher mode operations.

27
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For block size restricted modes, the operands of E and D are an integral mul-
tiple of those of E and D. If a cipher mode symbol is used to refer to a specific
mode, the mode’s name is added as superscript, for instance, DCBC .

We use c:n to refer to a string of length n consisting only of c, for instance
the all-zero block 0:n.

3.1 Traditional cipher modes and their shortcomings

The following cipher modes are fairly simple, and have been in use for a long
time. Their ideas serve as building blocks for other more sophisticated cipher
designs. If we aim to understand the motivations of these sophisticated designs,
we have to have a look at the traditional designs to see, where they succeed
and where they fail.

3.1.1 CBC: Cipher Block Chaining

The most common mode might be CBC, which stands for Cipher Block Chain-
ing. This design’s main intent is to overcome the shortcoming that in regular
ECB mode two identical plaintext blocks encrypt to the same ciphertext, and
hence ECB reveals plaintext similarities. CBC creates an interdependency
among the cipher blocks by XORing the preceding cipher block into the cur-
rent block’s plaintext. This operation modifies the plaintext and thus modifies
the ciphertext. Figure 3.1 is a visualisation of this mode.

The formal definition of CBC is1:

Encryption: ECBC : Pn ×K → Cn (3.2)
P = P1 × P2 × · · · × Pn

Ci = EK(Pi ⊕ Ci−1)

ECBC(P ) = C1 × C2 × · · · × Cn

Decryption: DCBC : Cn ×K → Pn (3.3)
C = C1 × C2 × · · · × Cn

Pi = DK(Ci)⊕ Ci−1

DCBC(C) = P1 × P2 × · · · × Pn

As for block ciphers, we want decryption to be the inverse operation of
encryption, and so we demand

D(E(P )) = P for all P ∈ Pn (3.4)

For CBC, this requirement can be proved quickly. Using the encryption defi-
nition (3.2),

Ci = E(Pi ⊕ Ci−1)

1The symbol for the Cartesian product will be relaxed to the concatenation symbol || in
further definitions, because this precise formalism is not required to make definitions clear,
and because ciphertext as well as plaintext is usually supplied in a concatenated form.
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we apply D and obtain

D(Ci) = D
(
E(Pi ⊕ Ci−1)

)
Because of (3.1), we can strip off D

(
E(. . . )

)
of the right side

D(Ci) = Pi ⊕ Ci−1

Thanks to the field properties of any GF(2) field we find the operation ⊕ to be
self-inverse. Applying it, yields

D(Ci)⊕ Ci−1 =
(
Pi ⊕ Ci−1

)
⊕ Ci−1

and because of the law of associativity, and the neutral element 0, the left hand
side can be refined to

Pi ⊕
(
Ci−1 ⊕ Ci−1

)
= Pi ⊕ 0 = Pi

If there is a proof of Equation (3.4) in a regular cipher mode paper, it is not
carried out in such detail. However, we have chosen this level of detail to
demonstrate that the field properties are nothing that could be omitted, and
thus we justifiably devoted the pages of Section 2.2 to their investigation.

The recursive definitions (3.2) and (3.3) need an initial value for C0. C0

is not computed, but set to an initialisation vector to stop the recursion. In
cryptography, this value is abbreviated by IV.

If encryption is used for communication purposes, an IV should be randomly
generated and agreed upon by all participating parties2. The IV does not have
to be kept secret. But this is different from the permission to transmit the IV
unencrypted. Some modes are sensitive to manipulation of the IV, and when an
IV is transmitted unauthenticated and unencrypted it is a target for potential
manipulation. When negotiating the IV, the receiver has to make sure that the
IV is authentic. Ways for secure CBC IV negotiation are described in [FS03].

What is also important about a cipher mode design is its parallelisation
characteristic. This is especially interesting for hard disk encryption, because
usual hard ciphers cannot keep pace with the I/O demands of modern RAID
arrays. To make encryption transparent performance-wise, it is necessary to
parallelise encryption among a cluster of cipher hardware. CBC is not paral-
lelisable. You can see in Figure 3.1 that the recursion requires all preceding
blocks to be enciphered. For any non-parallelisable cipher, it is possible to
define an m-way interleaved version, so that plaintext block Pn is dispatched
to (n mod m)th encryption unit. Unfortunately, an m-way interleaved imple-
mentation and an n-way interleaved implementation is not compatible unless
m = n.

Fault tolerance can be beneficial or undesired. CBC is fault tolerant to
some extent. An error in the transmission of the CBC ciphertext causes the

2In fact, the IV should be unique and unpredictable for CBC, but if the IV domain is
sufficiently large, it is acceptable to chose the IV at random.
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Figure 3.1: CBC Mode

corresponding plaintext block to be completely garbled. But as you can see
from the decryption definition (3.3), a cipher block Ci appears twice, once
involved in the decryption of Pi and once in the decryption Pi+1. The plaintext
block Pi will be totally garbled, because a bit-error in the argument of D is
diffused to the whole result. The block Pi+1 will have a bit-error at the same
position as Ci, because Ci is XORed into the decryption result. The term bit-
error might not always be appropriate, as bits might be flipped intentionally by
an attacker. Basically, this simple error-propagation is the cause for the attack
outlined in Section 4.5. But before we investigate remedies to these problems,
we have a look at other popular cipher modes.

3.1.2 CFB: Cipher Feedback Mode

CFB overcomes the block size limitations of CBC by adopting stream cipher
properties. Any stream cipher encrypts and decrypts by XORing the plain or
ciphertext with a key stream. Stream ciphers differ in the generation method
for the key stream.

E(P ) = S(IV)⊕ P

D(C) = S(IV)⊕ C

As encryption joins the key material by the plaintext with a trivial XOR, de-
cryption decomposition is equally trivial. An attack can easily modify the
decrypted plaintext by flipping chosen bits from the ciphertext stream. These
bit positions will be also flipped in the decrypted plaintext. This is particularly
bad, if the structure of the plaintext is known, for example by some standard
protocol. With some knowledge of the plaintext, an attacker can arbitrarily
modify the decrypted plaintext. Thus, a stream cipher should never be used
without an integrity checking mechanism.

The structure of the CFB mode is depictured in Figure 3.2. A key stream
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Figure 3.2: CFB Mode encryption

is prepared using a certain amount of preceding ciphertext material.

R1 = IV
Ri = (Ri−1 � m) || Ci

Si = Ek(Ri)
S(IV) = S1 || S2 || . . . || Sn

Given an n-bit block cipher, CFB can operate in m-bit mode, when m ≤ n.
After every step, m bits are shifted into the key register R, and an encryption
call is made to produce the key stream for the next m plaintext bits. As for
CBC, an initialisation vector is needed, which serves as initial content for the
shift register.

The case m ≤ n is purely theoretical, as there is no gain from using a
smaller shift size than the block size. In addition, there is the disadvantage
that n/m encryption calls must be performed before a block with the size n is
encrypted. The ratio n/m is minimised for m ≤ n when n = m.

3.1.3 OFB: Output Feedback Mode

OFB works similar to CFB, but the important difference is that it does not
shift ciphertext into the encryption register, but short the key material itself.
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The key stream of OFB is generated by

S0 = IV
Si = Ek(Si−1)

when m = n. No other setting is stated here, as no other setting should be
used. m < n is insecure, see [DP83], and choosing m < n also raises the
computation burden for this mode.

A nice property of OFB is that key material can be generated in advance.
An idle processor could fill a key material cache for data soon to come. This
is not possible with CFB, as the key stream generation process depends on Ci,
which in turn becomes available as recent as Pi.

3.1.4 CTR: Counter Mode

OFB and CFB are still defined recursively. In case of CFB the ciphertext is
fed back, in case of OFB, the key material. This implies that no random access
mechanism can be used on the cipher stream.

By removing this recursive reference and putting a more simple sequence in
place, it is possible to seek in a cipher stream without decryption (or encryp-
tion) of the preceding blocks. Counter Mode also uses an initialisation vector,
but instead of using a recursion to generate subsequent key material, it uses a
simple addition.

Si = EK(IV + i) (3.5)
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Figure 3.4: CTR Mode encryption

Thus, it is possible to skip unneeded blocks in a stream, as the key stream can
be easily computed for any block i. Also this mode is the first fully parallelisable
one as there are no interdependencies for the generation of the individual key
stream blocks Si. However, special care must be taken that the values used in
the key stream generation are unique. See [NIS03b] and Section 3.8.1.

As we will see in Section 4, the idea of using a counter for IV generation is
used in a hybrid design with CBC to realise random-accessible data.

3.2 Modes for authentication

The purpose for authentication modes is to assure that the transmitted data
has not been tampered with undetected. Authentication modes need a common
secret, otherwise an attacker could modify the authentication data as well to
hide his data modifications. What distinguishes a regular digest from a message
authentication code (MAC) is that a MAC is keyed to a secret. While regular
digest algorithms are designed to be hard to invert, the existence of a common
secret relaxes this requirement a bit.

3.2.1 CBC-MAC: Cipher Block Chain – Message
Authentication Code

CBC-MAC is a side product of CBC encryption. The MAC of CBC-MAC is
defined as the last cipher block produced by the CBC encryption of a message
M . As we can see from the definition of CBC (3.2), the encryption process
is recursively defined and the last cipher block Cn depends3 not only on Pn,

3CBC is also said to be infinitely error-propagating for encryption, because the encryption
function can be written as function of P1 . . . Pn−1. Notice that CBC decryption has an error
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but also on all P1 . . . Pn−1. The manipulation of a single bit in one of the
plaintext blocks will cause Cn to change in a non predictable way. Neither can
the modification of a Pi been compensated by a change in another Pj thanks
to the diffusion of E. Together with the key dependency of the process, these
properties make CBC suitable as MAC.

The CBC-MAC can easily be obtained, but it is not possible to reduce the
workload by using the same key for CBC-MAC and CBC encryption, when
CBC-MAC is used to protect the plaintext of a CBC stream. The easiest
informal proof for this assertion is the fact that when the last encryption block
is reused as CBC-MAC, the information is merely duplicated, but no new
information is added. The duplication of information is sufficient for integrity
checks, but it is not for authentication checks, as the attacker can simply repeat
his modification for every copy.

CBC-MAC is insecure for messages of varying length. An attacker can
query an encryption-oracle for the single-block message a and will learn its tag
CBC-MAC(a). Then he can reuse the tag as message and query the oracle for
the tag of the tag, and will learn CBC-MAC(CBC-MAC(a)), but this tag is
equivalent to the two block message a || 0:n, where n is the block length. Thus,
the attacker can forge the message a || 0:n. The tags generated by CBC-MAC
can only be used to authenticate messages with the same size.

If data is authenticated by CBC-MAC and encrypted by CBC, CBC-MAC
has to run with a different key than a CBC encryption process running along
side. OMAC tries to remove this requirement.

3.2.2 OMAC: One-key CBC

OMAC builds upon the XCBC structure.4 XCBC shares many processing
elements with CBC. By doing so, CBC encryption and XCBC generation taken
together is very efficient. XCBC and CBC differ at the last encryption block.
While CBC XORs the last plaintext block only with the preceding cipher block,
XCBC also adds additional key material, K2 or K3. This will effectively change
the outcome of the final encryption step, yielding a result, which is totally
distinct from the last block of the CBC encryption. Which one of the keys K2

or K3 is chosen depends on the message length.
XCBC does pad the message securely, which means that the padding can

be removed in an unambiguous way. The padding is not done by merely adding
zeros but instead ’1’ is inserted first, before filling the rest of the message with
zeros. This is vital, otherwise there would be one MAC for two distinct short
messages, M and M ′, with for instance, M ′ = M || 0 . . . 0.

By inserting ‘1’ first, the position where the padding started is uniquely
identifiable. To proof this, assume the last message block is inspected from back

propagation length of 1, because decryption can be written as a function of Ci−1 and Ci,
but no other Cj . The ABC mode, which is very similar to CBC, installs an infinite error-
propagation also for decryption, which enables the use of AREA (see Section 3.4.1).

4Do not confuse XCBC with the XCBC cipher mode. The MAC scheme and the cipher
mode share nothing except the name.
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to forth. That is actually never done, but in theory the first encounter of ‘1’
in the examination would mark the start of the padding. Such an examination
would not work with the undifferentiated padding with 0.

To distinguish padded and non-padded messages, XCBC switches between
the key material K2 and K3. Thanks to this key material selection, XCBC
will produce different tags for two almost equal messages, M and M ′, where
M ′

n = Mn || 100 . . . 00.5

OMAC stands for One-Key MAC. It is a derivative6 of XCBC. While XCBC
requires three keys, OMAC generates them from a single key K by key splitting
techniques.

The OMAC family in general and the specifications of OMAC1 and OMAC2
are presented in [IK02]. The algorithm for the OMAC family is given in Listing
3.6. OMAC implements XCBC with the following values for a given key K,

K1 = K

K2 = HL(Cst1)
K3 = HL(Cst2)

OMAC defines HL, Cst1, and Cst2 as following:

HL(x) = L⊗ x

L = EK(0:n)
Cst1 = x

Cst2 =

{
x2 for OMAC1
x−1 for OMAC2

While OMAC1 and OMAC2 share most settings, the choice of Cst2 is differ-
ent. The mapping between polynomials and the bit representation is standard
(as defined in section 2.1). The reduction polynomials for the Galois Field
multiplication are defined in the OMAC paper [IK02].

5An approach taken by other designs is to always pad the message.
6Between OMAC and XCBC, there was also TMAC, Two-key MAC.
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Listing 3.6: OMAC algorithm
L ← EK(0:n)
Y0 ← 0:n

pa r t i t i o n P in to P1 . . . Pm

for i ←1 t i l l m− 1 do
Xi ← Pi ⊕ Yi−1

Yi ← EK(Xi)
Xm ← padn(Pm)⊕ Ym−1

i f |Pm| = n :
Xm = Xm ⊕HL(Cst1)

else
Xm = Xm ⊕HL(Cst2)

T = EK(Xm)
return T

3.3 Modes accepted for NIST consideration

The US-American National Institute of Standards and Technology does not
stop short by only standardising a block cipher (AES), but also aims at modes
of operation. The three main categories are, (1) encryption modes, (2) authen-
tication modes, and (3) authenticated encryption modes. The last category
is not merely the combination of a particular encryption mode with some au-
thentication mode. An authenticated encryption mode tries to utilise synergy
effects between encryption and authentication as best as possible while staying
secure.

Before we take a brief look at the proposed scheme, we will describe common
cipher mode properties. NIST asked submitters to describe their designs on
the basis of a set of properties to make them easily comparable. Knowledge
about these properties is of course essential for a reader to make a good choice.

Security Function A cipher mode is either for authentication (A), encryp-
tion (E), authentication and encryption (AE), or authentication-encryption
with associated data (AEAD). All modes except the last operate on a single
message. For a message A || M , the last mode (AEAD) is able to protect the
confidentiality of a message M , and the integrity of both, A and M . The user
of the mode can decide, what portion of a message is available in plaintext,
without losing the authentication property.7 AEAD modes are used for rout-
ing protocols, where you want the routing information to be available to all
intermediate routers.

Performance The major criteria for the performance of a block cipher are
expressed with other finer-grained properties (block cipher invocations, paral-

7The non-triviality of the addition of unencrypted but authenticated data is described
in [Rog01a].
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lelisability and preprocessing capabilities, see below). However, the mode itself
can feature other non-trivial computations like Galois Field multiplications.
When there are such elements, they are stated in the performance entry.

Parallelisability Crucial for the general applicability of a mode is scalability
with the amount of hardware put to its disposal. For instance, hardware used
in CBC mode will quickly face its limits when used for network transmissions
requiring a speed of 10GB/s or more. This speed can only be sustained by a
cluster of hardware encryption engines. The distribution of the encryption load
is only possible with parallelisable modes, where the encryption operations are
reasonably independent of each other.8

Key material A mode might utilise more than one cipher primitive in its
construction. Usually, these encryption/decryption primitives are all setup to
use the same key. But more sophisticated modes might need additional key
material. Either they require the user to supply it or they generate it on their
own by key separation techniques (as for instance in OMAC).

Memory requirements A mode should have a low memory requirement
for its cipher mode state. An elegant solution would be implementable at low
cost even in smart cards and also in network routers, where many concurrent
sessions must be handled.

Synchronisation Many cipher modes require the sender and receiver to
agree on an initialisation vector. Some modes assume other values to be shared
by both parties.

Error propagation The number of subsequent blocks that will be influenced
by a bit-change in a block. See Section 3.4.1.

Message length requirements & ciphertext expansion We encounter
three common types of modes:

1. modes requiring the user to provide a message, which size is a multiple
of the underlying block cipher size.

2. modes that accept messages of all sizes by padding the message. The
message ciphertext is expanded to the next integral multiple of the block
cipher size.

8A software implementation of the counter mode will usually increased the counter value
by adding 1 successively, and also a definition following this idea can be given CTR0 =
IV, CTRi = CTRi−1 + 1. However, this does not qualify as non-parallelisable cipher mode,
because the addition operation can be easily rewritten as non-recursive definition, and the
single steps of the counter mode can be made “reasonably independent” of each other. A
more interesting example is given in Section 3.4.4 and Section 3.4.5, where an apparently
recursive structure is separated to be parallelisable.



38 CHAPTER 3. CIPHER MODES

3. stream cipher modes that accept messages of all sizes and do not expand
the ciphertext.

In authentication schemes, the ciphertext is also expanded by the inclusion
of the MAC.

Block cipher invocations This property indicates how many block cipher
calls a design has to carry out for the message M with an underlying n-byte
cipher.

Pre-processing capabilities A desired property of a cipher mode is that
substantial computing can be done in advance, so that when plaintext or ci-
phertext becomes available for processing, it can be worked off quickly. An
encryption system running in Counter Mode for example, can spend idle time
to pre-process the key stream for the next burst of data, and therefore reduce
the latency of the system.

Provable security A methodology first explicitly formulated by Bellare and
Rogaway is the proof of the security of cipher mode by the use of the random-
oracle model [BR93].

For cipher primitives, the distinguishing attack class aims to cover all other
attacks, like known plaintext, chosen plaintext, chosen ciphertext and so on.
Cryptographers are cautious people, and they mark a cipher insecure, when
there is an algorithm that can distinguish an ideal cipher9 from the real cipher
with a significant probability. A probability is significant in this context, when
it is above the success rate that can be achieved by random guessing.

When such an algorithm is found, the algorithm is then said to implement
a distinguishing attack.10 Cryptographic papers use the adversary metaphor
to speak of such algorithms. The distinguishing attack is so general, that it is
hoped to cover all attacks yet to be found.11 The oracle methodology used for
cipher modes is similar.

To proof a cipher mode insecure, the adversary has to distinguish the cipher
mode from a random permutation with a significant probability. The security
of the cipher mode shall be proved independent of an underlying cipher, so the
cipher is replaced by an ideal cipher represented by an encryption oracle. All
parties have access to this oracle, also the adversary. This is reasonable, because
in a real world implementation, the oracle is replaced by a real cipher and as
security has nothing to do with obscurity the adversary is assumed to have
access to the cipher specification. Hence, he can carry out any computation he
likes, which is equivalent to querying the oracle.

9An ideal cipher is a key-dependent random permutation. See [FS03], p. 46.
10The algorithm has to be non-trivial. An example for a trivial adversary is one that

samples the real cipher, for instance with an all zero plaintext and key, and compares the
sample with the candidate, which is either the real cipher or a perfect cipher.

11In Chapter 4, we will encounter the watermarking attack, which is basically a distin-
guishing attack against CBC.
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The encryption oracle behaves like an ideal cipher. The security proof con-
sists of a series of formal deductions that shows that there is no adversary that
can distinguish the cipher mode from a random permutation. If there is such a
proof, the cipher mode stands a good chance that no piece of information can
be extracted from its ciphertext stream, as an attacker cannot even distinguish
the ciphertext from a random permutation.

Under the assumption that the random oracle is an ideal cipher, the proof
is a series of indisputable formal statements. In a real implementation, the
random oracle has to be replaced with a pseudo-random permutation (PRP),
when we consider ciphers, or a pseudo-random function (PRF), when we con-
sider hashes. A security proof is likely to show, that breaking the cipher mode
will require breaking the underlying PRP or PRF.12

Patent status Last but by no means least. Ciphers and cipher modes can be
patented in a few parts of the world. Even though the number of such countries
is small, a global standard or a product intended for global distribution has to
consider this issue.

From a cryptographers point of view, patents are totally irrelevant. A
cryptographer is interested to achieve a fixed level of security using a design
with the best possible performance, or – less common – the best security for
a fixed performance level. But the cryptographic community, which is subtly
different from an agglomeration of scientists, care a lot about patents. The
cryptographic community considers a third factor in their preferences next to
security and performance: the unhampered use of intellectual property13. From
the NIST standardisation efforts for a cipher, and a cipher mode, the latent
refusal of patent-encumbered proposals from the community became highly
visible. The members of the community refuse to work on and publish reviews
of patented designs, because they have the feeling to work for the benefits
of the patent holders without receiving any compensation for their efforts14.
Also, it is argued that patent licensing poses a burden to small businesses and
international users.

From an implementors point of view, it rarely makes sense to enter into
the costly process of licensing terms negotiations. It simply does not pay off.
For instance, there are many free two-pass authenticated encryption modes,
but also many one-pass patented modes. Choosing a two-pass design over a
patented two-pass design makes sense, because the additional cost of an AES
engine in silicon is likely to be smaller than the licensing fees.

12 [CGH04] shows that things are not as straight forward. Canetti, Goldreich and Halevi
give a class of protocols that result is an insecure cipher mode, when their random oracle is
replaced by a real implementation. The reader might be tempted to think that this is caused
by an unlucky oracle-replacement choice. But no, the authors demonstrate that there is no
oracle-replacement at all that will yield a secure implementation. The cipher modes used in
the demonstrations are nothing to encounter in practise, nonetheless, a security proof should
not cease further cryptanalysis, as there is no ideal cipher in the real world.

13In this context, the term “property” is a misnomer, as the essence of the expression
“property” is the constraint of the rights of third parties.

14Ferguson describe this attitude briefly in the introduction to [Fer02].
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3.4 NIST: Authenticated Encryption modes

Before we have a look at concrete modes, we classify generic construction meth-
ods. In the introduction to the last section, we claimed that authenticated
encryption modes use synergetic effects between the task of authentication and
the task of encryption. Unfortunately, this is rather an option than a norm.
Cipher modes that can produce results in a single pass are exceptions. The
problem is not the incapabilities of cipher mode designers but patents. The
patents on IAPM, OCB and XECB cover most of the approaches that can be
used to produce one-pass modes. At the time of this writing, it is not clear
if these patents are overlapping. At the second NIST workshop not even the
XECB author was able to give a clear answer to the question, whether his
patents also apply to IAPM or OCB [NIS01]. It is not surprising that there
are solutions that stick to the safe side. They are constructed by simply gluing
an authentication mode to an encryption mode to produce an authenticated
encryption mode.

3.4.1 Generic construction methods

Encrypt-then-Authenticate

There are three ways to pair an authentication mode and an encryption mode
together:

1. encrypt-then-mac: The data is encrypted with a cipher E first and then
authenticated with an authentication mode A. The result for a message
M is AK(EK(M)).

2. mac-then-encrypt: The data is authenticated with an authentication
mode A first and then encrypted with a cipher E. The result for a message
M is EK(AK(M)).

3. encrypt-and-mac: The encryption and the authentication is done inde-
pendently. The result is provided separately as AK(M) || EK(M).

Most cipher modes we encounter are of the type “encrypt-then-mac”. By
the findings of [BN00], the encrypt-then-mac construction always achieves the
desired security, while encrypt-and-mac does not. Also for the mac-then-
encrypt scheme, its security is not as guaranteed as for encrypt-then-mac15.
Because mac-then-encrypt is a simple reordering of steps compared to encrypt-
then-mac, it will never save any block cipher calls, therefore mac-then-encrypt
is not considered, and encrypt-then-mac is the only scheme left.

15This approach violates the Horton principal. Ferguson argues in [FS03] that one should
not authenticate what is being said, but what is being meant. He also argues that the security
disadvantages are negligible that arise from choosing mac-then-encrypt over encrypt-then-
mac. However, we find no mac-then-encrypt schemes at NIST.
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AREA: Added Redundancy Explicit Authentication

Any cipher mode that possesses an infinite error propagation can be used in
the construction of an authenticated encryption mode. Error-propagation is
defined as the number of arguments that must be present to write encryption
or decryption as a function of blocks Pi or Ci. CBC encryption is infinitely
error propagating as Ci is written as a function of all previous plaintext blocks
P1 . . . Pi, while decryption can be written as a function of only two blocks. For
a discussion of the advantages and disadvantages of having a cipher mode with
infinite error propagation, see [Knu00].

AREA works by appending a value L to the plaintext stream. If decryption
is infinitely error propagating, then a bit-change in any Ci will cause the last
blocks plaintext Pn to change, as Pn is dependent on all blocks Ci thanks
to error propagation. The value L is prepended unencrypted to the cipher
stream, and the receiving party can check the authenticity of the ciphertext
by decrypting the message and comparing the last plaintext block with L. If
the message has not been tampered with, the last plaintext block decrypts
correctly to L.

Manipulation Detection Code

Manipulation Detection Code is a generic term for a function that generates
a checksum of a message. There are sophisticated and very simple forms of
MDC. An example of a sophisticated MDC is a cryptographic hash function.
Hashing the plaintext and appending the hash to the encrypted text results in
a secure authenticated encryption scheme. But this approach is even slower
than applying a MAC, as hash functions are usually slower16.

Simpler forms of MDCs are cyclic redundancy codes or even plain XOR

sums. In particular the last choice might not yield a secure authenticated en-
cryption algorithm under every circumstance. For instance, an XOR sum is
totally insecure when used with stream ciphers, because an attacker can ma-
nipulate a bit position twice in a message stream, so that the XOR summation
yields the same result as before, or he can manipulate the MDC directly.

For XOR sums, it is trivial for the sender to generate collisions. For au-
thentication systems, and hashes, this characteristic would make them useless.
Authenticated encryption schemes are different in the amount of data they
produce and the purpose they are built for. AE schemes are designed to ensure
the authenticity of something that was said, while hashes and MACs protect
something that had not been said. While for the former it is easy to check
whether the tag is correct, the receiving party for MACs or hashes has to make
up its own idea of what was meant but not said. When MACs and hashes are
used to bind the sender to a statement, the receiving party is in trouble, when

16The reason for this is that a hash function does not have a secret piece of information
it can rely on. In contrast, a MAC can use key information and therefore does not have to
be as collision resistant. The iterations of a hash and the rounds of a cipher are hard to
compare, but in general, a hash is more computation intensive.
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the sender can come up with a different meaning for a MAC value, and simply
claim that the receiver had the wrong idea of what was meant. With authenti-
cated encryption schemes this is not possible, as the tag and the ciphertext are
treated as a pair and both are bound to a single nonce. Hence, it is reasonable
to use such a simple checksum mechanism.

In general, an implementor should not try to glue an arbitrary MDC to
an encryption algorithm and hope it will result in a secure solution. [GD00a]
gives insights about the different types of security goals that can be achieved
by those synthetic construction.

3.4.2 CCM: CBC-MAC with Counter

CCM’s security function is AEAD, so it cannot only authenticate encrypted
data but also plaintext data sent along. CCM uses a CBC-MAC for generating
authentication data, and Counter Mode for encrypting the message. First, the
data is encrypted in Counter Mode, then paired with the additional data to be
sent in plain, and finally a MAC is generated for the whole message.

CCM is one of a few modes that can be parameterised. For interoperability
the parameter values are required to be encoded into the data stream. The
parameters L and M can be tuned.

L describes the ratio between nonce size and message size. The counter
mode part in CCM takes the value Ai and forms the key stream by encrypting
it, Si = Ek(Ai). Ai contains a nonce and the message block number i. The
longer a message is, the more message block numbers are used up in the en-
cryption, and therefore the field holding the block number must be larger. As
this field becomes larger the nonce size has to decrease, as the size of Ai is fixed
and imposed by the block cipher size. Because in Counter Mode special care
has to be taken that the key stream base values Ai are not reused, the explicit
mixing of the nonce and the message block number is a reasonable approach.

The parameter M stands for the size of the authentication tag. A larger
value for M achieves better security against forged messages by trivial means.
But this adds extra costs by having to transmit the larger tag. CCM is designed
for scenarios, where in general, authentication is desirable, but the forgery of
a single message is not fatal. An example is an encrypted video stream.

CCM is specified in [WHF]. CCM has been adopted in the IEEE 802.11
wireless standard.

Despite many alternatives, NIST decided to move forward and submit a
recommendation for this mode. The cryptographic community voiced their
criticism in a number of papers. The most prominent comment came from
Rogaway, the designer of OCB [RW03]. The most often voiced concern is that
for CCM the message size has to be known before hand. As we demonstrated in
section 3.2.1, CBC-MAC cannot produce MACs for messages of varying length.
The CCM designers fixed this limitation by prepending the size of the message
to the message. But this makes the encryption process “offline”, meaning that
encryption cannot take place until the whole message is handed to encryption
routine. Of course, at the start of the encryption, the caller could supply the
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number of message blocks, that will be handed to encryption, but then the
caller himself has to know the message length in advance. This pushes the
problem to an upper layer, hence algorithms that are online result in better
performance under certain situation, as no message buffering is necessary.

In response, NIST made some small changes to the recommendation docu-
ment, but insubstantial [NIS03a]. While writing this document, NIST made an
unusual step: It decided to publish an alternative standard for authenticated
encryption. It can be argued that this is because of the shortcomings of CCM.
The candidates for the second recommendation are CWC and GCM.

3.4.3 EAX: Encrypt-Authenticate-Translate

EAX is an enhanced version of CCM. CCM is using CBC-MAC for authenti-
cation. EAX is using OMAC instead of CBC-MAC, which was shown to be
a close relative in the previous section. This change removes the requirement
for the sender to know the message size in advance. The block cipher calls are
almost identical to CCM. EAX has been presented in [BRW03].

3.4.4 CWC

The counter mode part of EAX and CCM can be processed in parallel, but
OMAC and CBC-MAC are still recursive constructions that prevent any par-
allelisation. CWC is the attempt to replace the MAC component by the par-
allelisable “Carter-Wegmen” scheme for a Message Authentication Code. The
theoretical foundation for this MAC is laid in [WC81].

The authentication tag T is computed as the result of a polynomial under
mod 2127 − 1 for a given x, and a series of coefficients Y1 . . . Yn corresponding
to the message represented as 96-bit integers. The length of the message is
encoded into Yn+1.

T = Y1x
n + Y2x

n−1 + Y3x
n−2 + . . . Ynx + Yn+1 mod 2127 − 1

The value x is derived from the key material. This integer addition can be
easily rewritten to suit processing on more than one processors. For instance,
the equation can be split into two polynomials, P1 and P2, by interleaving
the coefficients and at the same time replacing x with y, which is set equal to
y = x2.

T = (Y1y
m + Y3y

m−1 + · · ·+ Yn)︸ ︷︷ ︸
P1

x +

(Y2y
m + Y4y

m−1 + · · ·+ Yn+1)︸ ︷︷ ︸
P2

mod 2127 − 1 (3.6)

P1 and P2 can be evaluated in parallel by the original algorithm. After that,
the results are combined with P1 x+P2. The cipher mode is presented in more
detail in [KVW03] including a security proof.
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3.4.5 GCM: Galois Counter Mode

GCM tries to hone the properties of CWC even more. GCM utilises Galois
Field multiplications to hash additional authentication data with a universal
hash. Galois Field multiplications can be implemented in hardware at a much
lower cost than the 127-bit integer arithmetic used by CWC. Furthermore,
the literature on GF multiplications in hardware is fairly rich and a variety
of schemes can be used, whatever is most suitable in terms of performance,
gate count and required working memory. As before, encryption is done by the
cipher running in Counter Mode.

The overall construction of GCM follows the “Encrypt-then-Authenticate”
scheme, again putting the unencrypted but authenticated data in front of the
encryption output. The additional authentication data and Counter Mode en-
crypted data are split into 128-bit blocks A1, . . . Am, and
C1, . . . Cn. The authentication tag is then computed by the GHASH(H,A,C)
function:

GHASH(H,A, C) = Hn+2
( m⊕

i=1

AiH
m−i

)
⊕H2

( n⊕
i=1

CiH
n−i

)
⊕ F H

where F represents the encoded length of A and C, len(A) || len(C). Because
GF(2128) is a field like Z, the same polynomial computation reordering can
take place as for CWC. Hence, this mode is parallelisable. For more in depth
information, the reader is referred to the GCM paper [MV].

3.4.6 IACBC

IACBC stands for Integrity Aware Cipher Block Chaining and is introduced
in [Jut01]. IACBC implements regular CBC with a post-whitening step of the
ciphertext with Si. Si is composed of a vector, W . W contains k elements,
where k = dlog2(i)e. How Si is computed from W is controlled by a Gray
Code. If bk . . . b0 represent the binary digits of the ith Gray Code as defined in
Section 2.5, then Si is computed according to

Si =
k⊕

j=0

bjWj

Thanks to the Gray Code oriented generation only one XOR has to be
carried out to generate Si from Si−1. As IACBC builds on CBC, this mode
is not parallelisable. The MAC is generated by (1) XOR summation of the
plaintext, and (2) treatment of the XOR sum as regular plaintext by appending
it to the plaintext stream.

The technique of adding a key dependent value before or after the encryp-
tion is called pre- or post-whitening and was seen in the design of DES-X for
the first time. The term is derived following the idea the colour white is a uni-
form and unstructured mixture of all colours. Adding whitening values to the



3.4. NIST: AUTHENTICATED ENCRYPTION MODES 45

plaintext aims to destroy all structures that might existing in plaintext, so it
does not infer with the encryption process. This technique is already included
at cipher level in recent cipher designs.

3.4.7 IAPM

IAPM is a refinement of IACBC introduced in [Jut00]. Instead of recursion,
IAPM uses Si as pre- and post-whitening value. The resulting construction
E(Pi ⊕ Si)⊕ Si is similar to the tweakable cipher mode construction given by
Liskov, Rivest and Wagner in [LRW02]. The MAC generation is the same as
in IACBC.

With the removal of the recursion of the encryption process and therefore its
error-propagation, it becomes possible to produce the same tag for two different
plaintexts. Consider a bit change in a plaintext Pi and another bit change at
exactly the same position in plaintext block Pj . The XOR summation will yield
the same results, both for the original plaintext and the modified one. However,
tag collisions are not fatal for authenticated encryption modes, because the
ciphertext cannot be manipulated as easily. An attacker has little hope to
control single bits in the decrypted plaintext by controlling the ciphertext.
The diffusion properties of the cipher primitive propagate any bit change in
ciphertext in an unpredictable way, thus introducing more than a single bit
change in the decrypted plaintext. The tag verification is likely to fail.

An isolated control of bits would be possible for data transmitted in plain.
MACs building upon XOR summation of plaintext transmitted in plain are
therefore not secure. Why the collisions that can be generated by the sender
at will are no problem is explained in Section 3.4.1.

3.4.8 OCB: Offset Codebook

OCB is an all-rounder. It provides message integrity at almost optimal block
cipher calls, does not expand the ciphertext, and puts only minimal require-
ments on the IV. The pitfall: It is patented. OCB is a refinement of IAPM
and differs in that the whitening values are generated by Galois Field multi-
plications also controlled by a Gray Code. These whitening values are suitable
for preprocessing.

L = Ek(0)

R = Ek(N ⊕ L)

Assume γi to be the respective binary reflected Gray Code of i as defined
in Section 2.5. The whitening values are defined as

Zi =
(
γi ⊗ L

)
⊕R

The ciphertext is formed by the generic construction

Ci = Ek(Pi ⊕ Zi)⊕ Zi
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To achieve minimal ciphertext length requirements, the last block, Mn is
treated differently.

Yn = Ek

(
|Pn| ⊕

(
x−1 ⊗ L

)
⊕ Zn

)
Cn = Yn〈0, |Pn|〉 ⊕Mn

where |Mn| denotes the length of the message block n and 〈i, k〉 is the byte-
slice operator defined in Section 2.1. Also, the multiplicative inverse of x is
guaranteed to exist as the underlying structure is a field.

The checksum is generated by the XOR sum of all Pi, while additional
material from Ym is also used to pad the last plaintext block,

S =
( n−1∑

i=1

Pi

)
⊕ (Pn || Yn〈|Pn|+ 1, n〉)

T =
(
Ek(S)⊕ Zn

)
〈0, τ〉

The remarks regarding tag collision in IAPM also apply here. As you can
see, there is only one block cipher call per plaintext block. The value L is
assumed to be computed at key setup, which needs to be evaluated only once.

For a security proof and an in-depth discussion, the reader is referred to
[RBBK01]. Fergeson presents a collision attack in OCB [Fer02]. Rogaway’s
remarks on the collision attack can be found in [Rog02]17.

3.4.9 CS: Cipher-State

The Cipher-State mode provides a new approach to generating authentication
data. This cipher mode does not regard the cipher primitives as black box,
but the cipher is dissected and examined to extract round information. This
is a reasonable approach, since all recent ciphers are round-based. The main
motivation to do so is the considerable performance gain.

Also in this design, we find Galois Field multiplications and a construction
of the type: Ek(Pi⊕R)⊕R, see [LRW02]. The whitening value R is generated
from iterative GF multiplications of the form

Ri = Ri−1x mod r

where r is the reduction polynomial.
An intermediate cipher state t is obtained by tapping right into the middle

of encryption. This intermediate state is used for authentication only and will
be incorporated into another series of GF multiplications (like for R). The
authentication code is formed by

Ai = Ai−1 x⊕ ti mod r

17Notice that the mode WHF Rogaway refers to has been renamed to CCM.
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After tapping the encryption process, the encryption continues normally, and
the ciphertext used for encryption is not altered.

The concrete algorithm also includes special cases for encryption-only, as
well detects weak whitening values (all-zero). The interested reader is referred
to [BDST03].

3.4.10 PCFB

Propagating CFB (PCFB) is a slightly modified version of the regular CFB
mode. Instead of using the shift register entirely for ciphertext, it is partially
run in output feedback mode. As the regular CFB mode, PCFB can be run
with a bit size m smaller than n, the number of bits of the underlying cipher.
If m = n, PCFB and CFB are equal. If m < n, than the bits m . . . 0 of the
feedback register are set to the ciphertext (just like in regular CFB mode), but
bits n . . .m are not shifted, but set to the bits m − n . . . 0 of the key stream
(like in OFB).

To provide authentication, an AREA (Added Redundancy Explicit Authen-
tication) is added to the ciphertext stream. As said in Section 3.4.1, this is
a random value prepended to the ciphertext stream, that is also encrypted as
closing plaintext block. If any intermediate ciphertext is manipulated, the clos-
ing plaintext decryption will be changed inevitably by the error propagating
characteristic of PCFB. More information is available in the PCFB submission
paper [Hel01]. Notice that this is one of the few unpatented AE schemes that
provide authentication with a single block cipher call per plaintext blocks. In
contrast, all ETA constructions have to use two.

3.4.11 XCBC-XOR

XCBC-XOR is a descendant of XCBC as specified in [GD00b]18. First, we
will describe XCBC and later see how it is combined with an XOR sum to
ensure authenticity. XCBC builds upon CBC, but post-processes the blocks
by adding a whitening value, hence any existing CBC hardware optimisation
can be reused. First, the regular chaining of CBC is obtained,

Zi = Ek(Pi ⊕ Zi−1)

then the post-whitening is applied

Ci = Zi + i× r0

by computing the integer addition under mod 2m, when using an m-bit cipher.
The post-whitening is necessary to counter cut&paste attacks as we will see in
Section 4.6.

XCBC comes in three flavours: stateless, stateful, and a mixture of stateful
encryption and stateless decryption (the same is true for XCBC-XOR). XCBC

18If you obtain this paper as PDF, do not be confused by the use of ⇔. This seems be a
font encoding error, and every instance of ⇔ should be read as dash/minus sign.
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starts with generating a random variable r0 and computing Z0 from this vari-
able. The three flavours of XCBC-XOR differ with respect to the computation
of Z0 and distribution of the value r0.

stateless stateful-sender stateful

encryption’s r0 random EK(ctr) random
first block y0 EK(r0) ctr EK(r0)
decryption’s r0 DK(y0) EK(ctr) DK(y0)
Z0 EK(r0 + 1) EK(r0 + 1) IV + r0

The authors give a generic method of pairing XCBC with a Manipula-
tion Detection Code (MDC) to obtain an authenticated encryption mode. In
[GD01], the authors propose to pair XCBC with an XOR sum. The XOR sum is
computed with the following equation and treated as regular plain text block:

Pn+1 =
( n∑

i=1

Pi

)
⊕Q

The value of Q depends on the length of Pn. If |Pn| = m, then Q is chosen
Q = Z0, otherwise Q = Z0.19 The original plaintext and the XOR checksum,
P || Pn+1, are handed over to encryption.

The decryption process operates regularly on the whole plaintext and re-
covers Pi, i = 1 . . . n + 1. To check authenticity, two checksum values are
obtained

S =
( n∑

i=1

Pi

)
⊕ Z0 S′ =

( n∑
i=1

Pi

)
⊕ Z0

Both values are compared with Pn+1 obtained by decryption. If neither S nor
S′ is equal to Pn+1 the message is manipulated and an error is returned. If
it is equal to S, then the message is known to be authentic and unpadded. If
it is equal to S′, the message is authentic and padded. The padding pattern
is removed and the original message is returned. XCBC-XOR is specified in
[GD01].

3.4.12 XECB-XOR

The periphery of XECB is similar to XCBC, as it was designed by the same
authors. The padding process and the XOR summation are equal. The core
process is different though. There is no cipher block chaining, but a pre- and
post-whitening construction.

Ci = Ek(Pi + Wi) + Wi

19x denotes the inverse element under the ⊕ operation for x, or in other words, x is the
bitwise complement of x.
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Notice that in contrast to other designs, the underlying algebraic structure
is the group of natural numbers mod 2128. In general, an addition in this group
is slower than an addition in a Galois Field, as the former has to be carried
out by bitwise addition, and the latter by bitwise XOR. There is a severe
performance difference between bitwise addition and bitwise XOR in favour of
XOR, because for addition, there is a the carry-bit that has to be propagated
through the adder gates of the ALU. Hence, Ek(Pi + Wi) + Wi is slower than
Ek(Pi ⊕Wi)⊕Wi.

The whitening values are

Wi = ctr×R + i×R∗

The distinction between padded and non-padded messages is made by means of
the value Q that is used in the whitening of the XOR checksum. Q is computed
just like in XCBC. XECB-XOR is presented in [GD01].

3.5 NIST: Encryption modes

Even though NIST has already standardised Counter Mode encryption as the
standard mode for confidentiality-only settings, we take a look at the other
approaches.

3.5.1 2DEM

2DEM is short for 2D-Encryption Mode. It treats the data as a two dimensional
structure, and its encryption operates first on all rows, then an all columns. The
process is depicted in Figure 3.7. First, a row encryption is carried out to obtain
the intermediate results ikk. Then, a column encryption produces the final
ciphertext. Assuming a 16x16 byte structure, a single bit change is first diffused
to the entire row by an AES encryption operation, and afterwards diffused to
the whole structure by column encryption. Operating an n-byte block cipher
this way will form indivisible blocks of length n2. 2DEM is described in more
detail in [BAG01].

3.5.2 ABC

CBC encryption reuses cipher blocks in the process of obtaining further cipher
blocks. ABC extends the idea to plaintext, and instead of encrypting the
plaintext, it encrypts the XOR sum of the plaintext with all previous plaintexts.
Optionally, the plaintext is hashed. The rationale behind this is to make the
decryption process more symmetric to encryption in terms of error-propagation.
This is sometimes desired, for example, to add an AREA, see Section 3.4.1.

Formally, ABC is defined as,

Hi = Pi ⊕ h(Hi−1)

Ci = Ek(Hi ⊕ Ci−1)⊕Hi−1
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Figure 3.7: 2D-Encryption Mode

This is invertible,

Hi = Dk(Hi−1 ⊕ Ci)⊕ Ci−1

Pi = Hi ⊕ h(Hi−1)

Choosing h(P ) = P will make Hi the XOR sum of all plaintexts up to
block i. Optionally h(P ) = P ⊗ x can be chosen to include a light diffusion
element. Choosing h(P ) = 0 makes this mode equal to IGE. ABC is presented
in [Knu00].

3.5.3 IGE

Infinite Grappling Extension is a special case of ABC, and thus it inherits
ABC’s error-propagation characteristics. In IGE, decryption and encryption is
symmetric insofar as the structure of both equations is equal. As you can see
from the definitions,

Ci = Ek(Ci−1 ⊕ Pi)⊕ Pi−1

Pi = Dk(Pi−1 ⊕ Ci)⊕ Ci−1

decryption is merely: Pi switched with Ci, and Ek being replaced by Dk.
Cipher modes featuring symmetric encryption and decryption are often chosen
for embedded systems, since when encryption and decryption can share the
same circuits. But this is not been the main motivation of IGE. Adding infinite
error propagation paves the way for appended checksums computed by an
MDC. AREA is also an option.
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3.6 SISWG

In this section, we will look at cipher modes especially designed for hard disk
encryption. SISWG, Security In Storage Working Group, is an IEEE task force
with the designated goal to standardise security solutions for data at rest. At
the moment of this writing, there are severals drafts considered as cipher mode
standard. They are available from the SISWG website [SIS].

SISWG plans to standardise a narrow cipher mode and a wide cipher mode.
A narrow cipher mode operates with a block size equal to the block size of the
underlying cipher. A wide cipher mode involves more cipher blocks and forms
an integral unit the size of a sector by letting the cipher mode diffuse the
information across the whole sector.20

LRW is the favourite for becoming the standard narrow cipher mode, while
EME is the favourite as wide cipher mode. This section also covers ABL,
because it is the only wide cipher mode in the SISWG discussion that is free
of any intellectual properties restriction.

3.6.1 LRW: Liskov, Rivest, Wagner

The most promising candidate for the narrow cipher block mode is LRW. Before
we are going into technical details, LRW is not the official name. It is rather
the nick name for LRW-AES. LRW is short for Livest, Rivest, and Wagner, and
this trio has given LRW its name (although not deliberately). They authored
the paper “Tweakable Block Ciphers” [LRW02] that outlines a generic way for
constructing a tweakable cipher mode from a function H : P → P with certain
characteristics21.

Cn = Ek(Pi ⊕H(T ))⊕H(T )

LRW-AES utilises this construction method by filling in a Galois Field
multiplication for H. LRW-AES, sometimes referred to as LRW-AES-32, is
drafted by SISWG in [Ken04].

LRW-AES ties a ciphertext to a disk location by pre- and post-processing
the cipher block with the result of Galois Field multiplication. Figure 3.8 shows
the encryption process for a single plaintext block. The structure of LRW-AES
is symmetric for encryption and decryption.

As you can see from the figure, LRW-AES needs an additional second key,
which serves as a constant for the GF multiplication. K2 is not derived from
the key material and has to be supplied additionally. The operands and the

20A few proposals were made to construct a wide block cipher instead of a wide cipher
mode, [BR99], [Luc96], but none of them is suitable for hard disk encryption, because either
they are not tweakable or have certificational weaknesses according to [Cro00]. [Cro00] also
introduces a wide block cipher named Mercy, that aims to close all these gaps. Unfortunately,
it has other problems, and was successfully crypt-analysed by Fluhrer in [Flu01].

21The function H has to be ε-almost 2-xor-universal, short ε-AXU2. The formal defi-
nition of this property is ∀x, y, z : Prh[h(x) ⊕ h(y) = z] < ε. A proof that Galois Field
multiplications belong to this class is given in [BGKM03].
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Figure 3.8: LRW-AES Mode

output of the GF-multiplication have the same size as the block size. While
K1 can change its size (128, 192, 256-bit for AES), K2 remains fixed at block
size (128 bits), resulting in a variation of the total key size from 256 to 386
bits.

A security proof for the tweakable cipher mode construction in general is
available in [LRW02]. In particular, LRW-AES uses Galois Field multiplica-
tions, that are considered in the security proof in [BGKM03].

3.6.2 EME: ECB-mix-ECB

EME is a parallelisable cipher mode developed by Halevi and Rogaway in
[HR03a]. EME can be decomposed into 5 stages involving 3 complete traversals
of the data. At key setup, L is computed as L = Ek(0:n).22

1. preprocessing by XORing L⊗ 2n into the plaintext block Pn.

2. encryption of all blocks

3. computation of the mask M and XORing M⊗2n−1 with the blocks 2 . . . n.
The first block is treated separately.

4. encryption of all blocks

5. postprocessing of the ciphertext by XORing L⊗2n with the cipher blocks
Cn.

In Figure 3.10, the cipher starts and ends with a pre-/post-processing step
utilising L. L is subsequently XORed with the plaintext, and at every step L is
multiplied with the constant 2 under GF(2128). The result of this preprocessing,

22Notice, the original paper states L = 2 ⊗ Ek(0:n), but we have changed the definition
for presentation purposes.
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Listing 3.9: EME algorithm
L ← EK(0:n)
for i ∈ [ 1 . . m] do

PPi ← 2i ⊗ L⊕ Pi

PPPi ← EK(PPi)
SP ← PPP2 ⊕ · · ·⊕ PPPm

MP← PPP1 ⊕ SP⊕ T
MC← EK (MP)
M ←MP ⊕ MC
for i ∈ [ 2 . . m] do

CCCi ← PPPi ⊕ 2i−1 ⊗M

SP ← CCC2 ⊕ · · · ⊕ CCCm

CCC1 ← MC⊕ SC⊕ T

for i ∈ [ 1 . . m] do
CCi ← EK(CCCi)
Ci ← 2i ⊗ L⊕ CCi

return C1 · · ·Cm

PPi, will be encrypted to PPPi = E(PPi). After encryption, all PPPi are
summed up in the Galois Field. In addition, the tweak value T is added.

The summation result MP is encrypted, and forms MC = Ek(MP). The
addition of MP and MC forms M, which serves as base value for subsequent
processing of the remaining cipher block 2 . . . n. M is applied to all blocks just
like L in the pre- and post-processing step. M ⊗ 2n is XORed with block n
for blocks 2 . . . n. From now on, the processing is a mirror-inverted version of
the processing done till the application of M. First, an XOR sum is generated
and applied to the first block. Then all blocks are encrypted, and finally L is
applied to all blocks.

The cipher mode structure is symmetric, thus for decryption, Ek has to be
replaced with Dk, and instead of plaintext, ciphertext has to be supplied as
input.

Applying the same hash function over and over is in general problematic,
because the target domain might disintegrate into short cycles of the hash
function. But the Galois Multiplication classifies as universal hash function
(see [WC81]), and therefore the iterative multiplication of L or M cannot get
caught in a low-order cycle, as GF multiplications are cycle-free. The problem
of codomain degeneration of hash functions is investigated closer in Section 5.3.

The algorithm for EME is given in Listing 3.9. In the Implementation
Guide (Section 3.10), a different form is presented, which is more suitable for
direct implementation. The SISWG draft is available as [Hal04].
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3.6.3 ABL: Arbitrary Block Length

Nomen est omen, ABL can be configured to form cipher blocks of arbitrary
length. We have seen such a flexibility only with stream ciphers that expose
the ciphertext to manipulation. ABL does not inherit this property, as it
does more than just XORing the plaintext with a key stream. ABL ensures
non-malleable encryption with its Luby-Rackoff cipher design. Thanks to this,
a bit modification will not be mirrored by a flipped bit in the corresponding
plaintext position, but is diffused among the whole plaintext block. Malleability
is explained in more detail in Section 4.5.

ABL is specified as ABL3 and ABL4. ABL4 adds an additional round to
ABL3 to protect against nonce reuse. We will only describe ABL4, because
this property is vital for hard disk encryption. We will also stick to the one-key
description given in the SISWG draft [MV04b], instead of the multi-key variant
given in the ABL paper [MV04a].

Figure 3.11 depicts ABL4. ABL4 splits the message into two halves, A and
B, where A is the first 128-bit block of the plaintext and B is the rest. fi,
gi are pseudo-random functions that need not be invertible. Notice that the
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left strand in the figure is 128-bit wide, while the left one has an arbitrary bit
length l. Therefore the operands and results of fi and gi have different sizes.
For simplicity, the following definitions do not include the key dependency.

fi : {0, 1}l × {0, 1}t → {0, 1}128 gi : {0, 1}128 → {0, 1}l

Before we give definitions for these functions, ABL needs a set of key de-
pendent constants at its disposal. They are generated in a counter like manner,

H = EK(0:128)

L1 = EK(0:127 || 1) L1 = EK(0:126 || 10)

M0 = EK(0:126 || 11) M1 = EK(0:125 || 100)

fi is defined as
fi(B, T ) = EK(Li ⊕GHASH(B, T ))

where GHASH is defined as in Section 3.4.5. f0 and f1 differ only by the
constant Li they use for the XOR step. As GHASH condenses the input B
of arbitrary length to 128-bit, the definition fulfils the requirement, that the
function’s co-domain has the size 2128. The second parameter T is either a
nonce (for ABL3) or a tweak (for ABL4) that can have an arbitrary length t.

The opposite is desired for gi. A 128-bit item must be expanded to an
arbitrary length. This is achieved by generating a counter mode key stream
as in Equation (3.5) with an IV computed from the argument and a whitening
value Mi.

gi(I) = S(I ⊕Mi)

The result of an ABL encryption is the concatenated results E || F as shown
in Figure 3.11.

3.6.4 Other modes

Herein we give a brief description of other cipher modes that are also discussed
in SISWG. The reason why we do not elaborate them in more detail is because
they are patented and therefore not as attractive for implementation.

CMC: CBC-Mask-CBC

CMC has also been drafted by the duo Halevi and Rogaway and is somewhat
of a cousin to EME. It is also a wide cipher mode, but in contrast to EME is
not parallelisable, because it uses two steps of CBC processing. CMC has the
advantage that existing hardware implementations for CBC can be reused.
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After an initial regular CBC processing, a mask is computed from the re-
sulting ciphertext, which is applied to all intermediate cipher blocks. The CBC
processing is restarted, but traversing the intermediate ciphertext from back
to forth. The tweak value serves as initial vector for both CBC steps, making
the cipher mode a tweakable cipher mode. CMC has a security proof in its
presentation paper [HR03b].

XCB: Extended Codebook Mode

XCB is an alternative wide cipher mode developed by McGrew and Fluhrer of
Cisco Systems, Inc. It also utilises a Luby-Rackoff structure, but in contrast
to ABL it uses different functions and has five rounds.

The initial and last round uses an encryption and decryption call for the
A half. In round two and four, GHASH is used to propagate material from
the B half to the A half. The B half is encrypted at the third round of the
Luby-Rackoff cipher utilising the A as IV of a counter mode key stream, just
like in ABL. XCB features nearly a single cipher block invocation per block.
See also [MF04] or [MF05].

3.7 NIST: Authentication modes

As authentication modes play a minor rule in hard disk encryption, we have a
look at only three of them. Two of them have counterparts as authenticated
encryption modes. In XECB-MAC we can see how the ideas used in the design
of XECB-XOR extend to an authentication mode. The same is true for PMAC,
that shares design elements with OCB.

At time of writing, NIST is about to adopt OMAC as MAC algorithm. The
authors of the OMAC paper use “OMAC” to denote a MAC family, so NIST
decided to use CMAC as name to avoid confusion.

3.7.1 RMAC: Randomized MAC

RMAC is using the CBC-MAC construction scheme, and additionally encrypts
the CBC-MAC result with a random key.

RMAC-tag = EK2⊕R(CBC-MAC(P )) ||R

RMAC was chosen by NIST first, but then NIST backed down from this
proposal, as the public comments were in favour of other modes. What is
critical about RMAC is the non-constant keying of the cipher primitives. For
many recent ciphers, the key setup is a non-trivial time consuming task, hence
for every MAC generation, there is also a key setup that has to be done.

A feature of RMAC is that it is “salted”. A salt is a binary string that is
used in a computation, and is made available with the result, so a trusted party
can verify the MAC by using the key material and R. The salt is randomly
generated and might change across RMAC invocations, thus the same plaintext
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will result in different MAC values. The MAC is said to be randomised. This
property is shared only by XECB-MAC among the NIST proposals. For more
information, the reader is referred to [JJV].

3.7.2 XECB-MAC

Most MAC schemes we discussed so far are a descendants of CBC-MAC. With
XECB we encounter a MAC scheme that comes from the class of XOR MACs.
In general, an XOR MAC operates by

1. splitting the message into equal sized blocks,

2. applying a pseudo-random function to all blocks,

3. XORing all results to compose the MAC.

The second step must depend on the block number in some way, otherwise
parts of the message that are equal will cancel each other out in the XOR

summation. This is ok for authenticated encryption modes but not for MACs,
see Section 3.4.1.

[GD01] specifies three flavours of XECB-MAC. We concentrate on the state-
less sender version solely, as the differences between the three flavours are not
important to demonstrate the XECB-MAC operation.

The stateless version chooses

PRF(M, i) = Ek

(
Mi + i× Ek(r0)

)
as its PRF function. r0 is a random salt. Padding is also implemented in
XECB-MAC, and to distinguish between padded and non-padded message, an
artificial plaintext block is created with a value Z or Z depending on whether it
is padded or not. The value Z is derived from r0. This MAC is also randomised
because of the random element r0 used in the encryption process. XECB-MAC
is specified in [GD01].

3.7.3 PMAC: Parallelizable MAC

PMAC’s main advantage is of course its parallelisability. This advantage is
inherited from the XOR-MAC construction it uses for most of the data. A
preprocessing step adds whitening values to the plaintext blocks. These values
are computed by Galois Field multiplications of a position dependent element
γi with L. L is a constant derived from key material. The sequence γi forms
a Gray Code. Because a Gray Code guarantees that only one bit changes at a
time, the next Galois Field multiplication result can be generated with a single
XOR, see Section 2.5.

After whitening, all blocks except the last are encrypted and an XOR sum
is computed. The last block is directly added to the XOR sum. If padding is
necessary for the last block, L⊗x−1 is added to the XOR sum to distinguish non-
padded and padded messages. The final XOR sum is encrypted and returned
as tag. PMAC was introduced by Rogaway in [Rog01b].
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3.8 Evaluating the modes for Hard Disk Encryption

Until now, the presentation of the cipher modes has been rather general. Hard
disk encryption happens in a setting different than communication encryption.
While the latter is a transmission between distinct parties, the party does not
change for the former. Hard disk encryption can be seen as an inter-time intra-
party transmission, in other words, a party communicating with an alter-ego
located in the future.

It is assumed that there is no way to save information in the meantime,
except for the shared secret key. No counters or intermediate values can be
stored. Therefore, hard disk encryption modes have to be stateless cipher
modes.

Users of hard disk encryption want to utilise as much space as possible
for their personal data, and do not want to devote disk space to disk space
management itself. Most hard disk encryption systems do not generate or save
an initialisation vector nor does the majority use authentication tags. But as
an initialisation vector is highly desirable and required for most modes, the
IV is simply derived from the sector number. Hence, the IV is reused and
predictable. The cipher modes employed for hard disk encryption must stay
secure for this kind of IVs.

3.8.1 IVs, Nonces and Tweaks

Many papers concerning the cipher modes above use terms like initialisation
vector, nonce, tweak, spice, counter, or diversification parameter. In general,
these terms refer to a piece of information that is required by the encryption
process – just as the key – but does not have to be kept secret.

Despite the IV terms appear to refer to the same concept, this is wrong and
they must not used interchangeable. However, it is true that there are strong
concepts that can be used in place of weaker ones.

There are two important characteristics for an IV,

Predictability An attacker might use distinguishing attacks against the ci-
pher mode, when a predictable IV is used for a cipher mode that requires
an unpredictable one. An example for a distinguishing attack for CBC is
given in [Rog04].

Uniqueness A cipher mode might require the IV to be unique. The impli-
cations, if this requirement is violated, are different. See below.

We distinguish the following types of initialisation vectors:

Salt A unique unpredictable item. If the salt domain is large enough and
no state can be maintained between encryption calls, it is reasonable
to generate the salt at random, because the uniqueness requirement is
unlikely to be violated.
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Nonce A nonce is a number used only once in the context of a key. A nonce
is allowed to be predictable.

Tweak A non-random predictable value that can be reused.

IV or initialisation vector general term used for all of the above.

NIST [NIS03b] recommends two methods to generate initialisation vectors
for CBC and CFB, either by a FIPS-approved PRNG [CE05], or by calling
Ek(ctr), where ctr is a counter. For OFB, the IV may be predictable (con-
trary to the other modes above) but has also to be unique. So for OFB, an
unencrypted counter is sufficient.

For CFB, OFB and CTR, the reuse of a nonce is fatal. An attacker can
simply XOR together both ciphertext streams, and the key stream is cancelled
out. The result is the XORed version of two plaintext streams. Any hint on
the content of one of the stream will immediately reveal the other stream.

For CTR, the requirements are even more tight, as the nonce is interpreted
as number and is incremented very predictably. Therefore, the user must ensure
not only that n is distinct from any value used before, but also that n was not
used in the encryption of any previous message. This requirement would be
violated, if a two-block message is encrypted with the initialisation vector n−1,
and another message is encrypted with n.

3.8.2 Evaluation

All of the cipher modes presented by SISWG are suitable for hard disk encryp-
tion. This is no surprise as all of them were designed for it. In contrast, any
stream cipher is unsuitable for hard disk encryption, because in hard disk en-
cryption the IV is reused, which is forbidden for stream ciphers. Many AEAD
modes presented at NIST use CTR as part of the design, hence no such cipher
mode is suitable for hard disks.

The remaining NIST ciphers were designed to operate with nonces. As
you can see from ABL, a cipher mode that is designed to process nonces is
not necessarily secure when the nonce values are reused. For a more theoretic
treatment of nonce security with respect to distinguishing attacks the reader
is referred to [Rog04].

3.9 Summary of Cipher Modes
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Name
Security
function

Parallel-
isable

IV Require-
ments Cipher calls Comments

CBC E No Salt d |M |
n e Many attacks. See Chapter 4.

CTR E Yes Extended
Require-
ments

d |M |
n e Stream cipher, unsuitable for

hard disk encryption.

CFB E No Salt d |M |
m e Stream cipher.

OFB E No Nonce d |M |
m e Stream cipher. Secure when run

in m-bit mode with m = n.

2DEM E Yes None speci-
fied

2d |M |
n e Data treated as 2-D structure.

Row and Column operations for
good diffusion.

ABC E No Salt d |M |
n e CBC styled, but with plain-

text accumulation, hence error-
propagation for decryption.

IGE E No Salt d |M |
n e Error propagation for decryption.

LRW E Yes Tweak d |M |
n e SISWG candidate. Narrow.

EME E Yes Tweak 2d |M |
n e+ 1 SISWG candidate. Wide.

Patented.

CMC E No Tweak 2d |M |
n e+ 1 CBC-Mask-CBC construction.

Patented. Wide.

ABL3 E Yes Nonce d |M |
n e+ 1 Three round Luby-Rackoff cipher.

Wide.

ABL4 E Yes Tweak 2d |M |
n e Four round Luby-Rackoff cipher.

Wide.

XCB E Yes Tweak d |M |
n e+ 1 Patented. Wide.

CCM AEAD No Nonce 2d |M |
n e+ 2 Encrypt-then-Authenticate con-

struction: CTR, CBC–MAC.
Message size must be known in
advance, hence offline. NIST and
IEEE 802.11 standard.

continued on next page
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Name
Security
function

Parallel-
isable

IV Require-
ments Cipher calls Comments

EAX AEAD No Nonce 2d |M |
n e+ 2 ETA-constr.: CTR, OMAC

CWC AEAD Yes Nonce d |M |
n e+ 3 ETA-constr.: CTR, CW-MAC

GCM AEAD Yes Nonce d |M |
n e+ 2 ETA-constr.: CTR, GHASH

IACBC AE No Salt d |M |
n e + 1 +

dlog2
|M |+n

n e
CBC core with plaintext whiten-
ing. XOR-MAC for authentica-
tion generating. Patented.

IAPM AE Yes Salt d |M |
n e + 1 +

dlog2
|M |+n

n e
Patented.

OCB AE Yes Nonce d |M |
n e+ 2 Patented.

PCFB AE No Salt d |M |
n e+ 2 Mix of CFB with OFB. Infinite

error propagation, authentication
via AREA.

XCBC-XOR AE No Salt, Nonce
for some
variants

d |M |
n e+ 1 CBC with post-whitening.

Stateless and stateful variants.
Patented. Integer arithmetic.

XECB-XOR AE Yes Salt, Nonce
for some
variants

d |M |
n e+ 1 Stateless and stateful variants.

Patented. Integer arithmetic.

XCBC-MAC A No None d |M |
n e+ 1 Foundation for TMAC and

OMAC.

OMAC A No None d |M |
n e+ 2 XCBC core. Candidate for NIST

standard under the name CMAC.

PMAC A Yes None d |M |
n e+ 1 XOR-MAC. Gray-code GF

multiplications for whitening.
Patented.

RMAC A No Salt d |M |
n e+ 1 Randomised. CBC-MAC core.

XECB–MAC A Yes Salt (nonce
for some
variants)

d |M |
n e+ 1 XOR-MAC with integer whiten-

ing. Randomised. Patented.

3.10 Implementation Guide

We give two example implementations for LRW and EME. These cipher modes
were chosen because they are the favourites in the standardisation process of
SISWG.

With the algorithms developed in Section 2.2 it is trivial to implement a
high-performance LRW implementation, see Listing 3.12. As LRW is symmet-
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Listing 3.12: LRW encryption
LRW−enc (P,T) :

GFMulSeq(mulTweaks , T, m) // The lookupTable used in GFMulSeq
is computed for L = Ek(0:n)

for i in [ 1 . . m] do
Ci → Ek(Pi ⊕mulTweaki)⊕mulTweaki

return C1 · · ·Cm

Listing 3.13: optimised EME algorithm, Encryption
L ← EK(0:n)
MP← T
for i ∈ [ 1 . . m] do

L ← 2⊗ L
PPi ← L ⊕ Pi

PPPi ← EK(PPi)
MP ←MP ⊕ PPPi

MC← EK(MP)
M ←MP ⊕ MC

CCC1 ← MC⊕ T
for i ∈ [ 2 . . m] do

M← 2 ⊗ M
CCCi ← PPPi ⊕M
CCC1 ← CCC1 ⊕ CCCi

L ← EK(0:n)
for i ∈ [ 1 . . m] do

L ← 2⊗ L
CCi ←EK(CCCi)
Ci ←CCi ⊕ L

return C1 · · ·Cm

ric for decryption, the decryption function can be derived by replacing Ek with
Dk, and switching Pi and Ci.

Concerning EME, the algorithm given in Listing 3.9 is not stated in an
optimal way for implementation. Listing 3.13 gives a version more suitable for
direct implementation. Notice that this algorithm is parented.





Chapter 4

CBC attacks

CBC is the most common cipher mode for hard disk encryption. Usually
the disk is divided into parts that are run in CBC mode separately. This is
not surprising, because if the hard disk would be run as a single large CBC
stripe, the random access nature of a hard disk would be lost. The encryption
process is recursive in CBC, so the encryption of the nth block depends on the
encryption of all preceding blocks, 0 till n−1. A single character change in the
first sector of a disk would causes an avalanche effect for the whole following
ciphertext, requiring a write operation not only to change a single block but
all following disk sectors. Of course this is an undesired property. Hence, the
CBC chaining is broken between every disk part and is restarted with a new
IV.

These disk parts are an atomic unit in terms of write operations. Choosing
the disk parts to have the size of a sector will match with the smallest unit of
hard disks, where a sector is also atomic in terms of writing.

We restate the CBC encryption and decryption definition from Chapter 3.
Note that decryption is not recursive, in contrast to encryption, since it is a
function only of Cn−1 and Cn.

Base: C0 = IV (4.1)

ECBC : Pn → Cn Ci = Ek(Pi ⊕ Ci−1) (4.2)

DCBC : Cn → Pn Pi = Ci−1 ⊕Dk(Ci) (4.3)

When we use a design, where the CBC chaining is cut, then we have multiple
IVs. In the following, C1 always refers to the first block in a sector, so the
indices are always relative to the sector start.

To fully specify an implementable encryption scheme, the way C0 is chosen
for every sector must also be defined. As mentioned before, C0 is a function
of the sector number, but there are many ways to state such a function. The
next sections will deal with how C0 is chosen, shading light on the surprisingly
grave security implications of this decision.

65



66 CHAPTER 4. CBC ATTACKS

4.1 Initialisation Vector Modes

We define an IV mode to be public, if the function for generating the IV from
the block number does not depend on key material. All modes depending on
key material are private.

4.1.1 plain-IV

The plain-IV initialises C0 with the sector number. To ensure compatibility
among different architectures, it is assumed that the IV is simply the 32-bit
version of the number n encoded in little-endian padded with zeros, if necessary.
This is the most simple IV mode, but at the same time the most vulnerable1.

IV(sector) = le32(sector)

This mode is a public IV mode.

4.1.2 ESSIV

The name ESSIV is derived from “Encrypted Salt-Sector IV”. It is defined as

IV(sector) = Esalt(sector) where salt = H(K)

ESSIV derives the IV from key material via encryption of the sector number
with a hashed version of the key material, the salt2. ESSIV does not specify
a particular hash algorithm H, but the digest size of the hash must be a valid
key size for the block cipher. For instance, sha256 is a valid choice for AES, as
sha256 produces a 256-bit digest.

Because the IV depends on a private piece of information, namely the key,
the actual IV of a sector cannot be deduced by an attacker. Thus, the IV mode
is private.

This mode was developed by the author of this work for Linux 2.6.10 to
counter attacks watermarking attacks.

4.1.3 Plumb-IV

Changing a single byte in an encryption block will cause all following encryp-
tion blocks to be different thanks to the recursive nature of CBC encryption.
Plumb-IV3 is designed to incorporate a kind of backward avalanche affect, so
that a single byte change in the last plaintext block will effect the first cipher
block.

1This scheme was the first implemented in the Linux kernel 2.2.
2This is a slight misuse of the term “salt”, as a salt is usually generated randomly. Here

it is deduced from key material.
3The name of this mode comes from Colin Plumb, who proposed this mode on the Linux

Kernel Mailing List. Bruce Schneier also mentions this construction in [Sch96] p. 224, but
does not give a name for it, so we will refer to it as Plumb-IV.



4.2. CONTENT LEAK ATTACK 67

This can be done by hashing (or MACing) the plaintext from the second
block to the last and using its value as IV. If a byte changes in these plain-
text blocks, the first block is influenced by the change of the IV. As the first
encryption affects all subsequent encryption steps, the whole sector is changed.

IV = H(P2 ||P3 || . . . ||Pn) (4.4)

Decryption is possible, because CBC is not recursive for decryption. The
prerequisites for a successful CBC decryption are two subsequent cipher blocks,
see (3.3). First, all plaintext blocks from 2 to n are recovered. This is possible
as C1 . . . Cn is all what is needed for P2 . . . Pn.

P2 = D(C2)⊕ C1

P3 = D(C3)⊕ C2

. . .

Pn = D(Cn)⊕ Cn−1

Then, the IV can be recovered by recomputing the hash from the plaintext
blocks P2 . . . Pn, according to (4.4), exactly as it was during encryption. Having
recovered the IV – that is C0 – the first block can be decrypted regularly,

P1 = D(C1)⊕ C0

The decryption is therefore possible and complete.
In addition to the plaintext content, the sector number should be used for

hashing. Otherwise, equal plaintext blocks will yield equal ciphertext blocks
on disk. To counter attacks based on the public IV characteristic, key material
should also be used in the hashing process.

A major shortcoming of this scheme is its performance. It has to process
data twice, first for obtaining the IV, and then for producing the CBC en-
cryption. Two-pass processing itself is not the problem, but with the same
performance penalty other schemes are able to achieve better security proper-
ties, because Plumb-IV inherits all problems associated with CBC. Therefore,
Plumb-IV seems to be no attractive candidate for implementation.

Having discussed all major IV modes, we now have a look at the attacks.
Except for the watermarking attack, all attacks are mountable regardless of
the choice of the IV mode. The severity of the attack might be marginally
different.

4.2 Content leak attack

This attack can be mounted against any system operating in CBC Mode. It
relies on the fact that in CBC decryption, the preceding cipher block’s influence
is very simple. The preceding block Ci−1 is XORed into the plaintext before
encryption. This block is readily available on disk (for i > 0) or may be deduced
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from the IV (for i = 0)4. If an attacker finds two blocks, i and j, with identical
ciphertext, he knows that both ciphertexts have been formed according to:

Ci = Ek(Pi ⊕ Ci−1)
Cj = Ek(Pj ⊕ Cj−1)

Since he found that Ci = Cj , it holds

Pi ⊕ Ci−1 = Pj ⊕ Cj−1

which can be rewritten as

Ci−1 ⊕ Cj−1 = Pi ⊕ Pj (4.5)

The left hand side is known to the attacker by reading both preceding
ciphertexts from disk5. The attacker is now able to deduce the difference
between the plaintexts by examining the difference of Ci−1 and Cj−1. If one
of the plaintext blocks happens to be zero the difference yields the original
content of the other plaintext block.

Let’s have a look at the chance of succeeding with this attack.

4.2.1 Probability

Let n be the number of possible cipher blocks out of C, and k the number
of blocks chosen randomly. When we are using an m-bit cipher, n = 2m.
We define P (k, n) as the probability that a sample with k element of C with
|C| = n results in one without duplicate elements. This probability function
has an obvious feature

P (1, n) = 1

as the first pick from C cannot result in a collision. In order that no collision
occurs, the second block must be chosen from n− 1 elements of C, as the first
pick occupies one element. The third block is restricted to n − 2 choices, the
forth to n− 3 choices, and so on. The expression continues with a form n− k
when a block is added to k existing blocks.

When these blocks are chosen randomly, we can give the probabilities that
adding a block to a sample results in a collision-free sample. Each addition
pick must be one of n − k elements from a set with n elements in total. The
probability for this to occur is n−k

n . With this, we can give a recursive definition
of P (k, n)

P (k + 1, n) =
n− k

n
P (k, n)

This gives the regular pattern

n− 1
n

n− 2
n

. . .
n− k + 1

n

4Only when using a “public-IV” scheme
5If one of the blocks is the first block of a sector, the IV must be examined instead, when

it is available as it is with a public IV.
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which we can also define directly with

P (k, n) =
1
nk

n!
(n− k)!

(4.6)

As this is the collision-free probability, a collision occurs at 1 − P (k, n). The
factorial is not easily computable for large n, therefore we use Stirling’s ap-
proximation

n! ≈
√

2π n
(n

e

)n

Substituting n! in (4.6) gives

P (k, n) ≈
√

2π n
(

n
e

)n√
2π (n− k)

(
n−k

e

)n−k
n−k

Applying ln and reducing the fraction gives

lnP (k, n) = ln

[
nn−k+ 1

2

(n− k)n−k+ 1
2
ek

]

and pulling ek and the exponent of the fraction out of the logarithm gives

lnP (k, n) = (n− k +
1
2
) ln

[ n

n− k

]
− k (4.7)

This calculations rely on [Har05].

4.2.2 Numbers

To get a feeling for the magnitudes involved in this attack, we present a few
numerical examples.

For instance, let the disk size be 200GB, and the cipher setup be CBC using
AES as cipher and plain-IV as IV mode. AES is a 128-bit cipher, therefore
|C| = n = 2128. In a disk sector, there are 32 cipher blocks, and when using
public-IV, all cipher blocks have their preceding cipher blocks available (the
preceding cipher block for the first block C1 is the IV C0). Thus all blocks
are candidates for a collision and in such a case will disclose information. If a
non-public IV mode is used, the cipher blocks in a sector useful for an attack
is reduced to 31, as C0 is not available for C1.

The number of cipher blocks available on a 200GB disk with known Cn−1 is
200GB ∗ 1024KB/GB ∗ 64blocks/KB6. This is equal to the number of 128-bit
blocks in a 200GB hard disk. Hence, k ≈ 1.342∗1010. As the extra precision is
of little value, we will examine the probability for exponents 1010 and following.
Filling this into the equation (4.7),

P (k, n) = e( 1
2+n−k) ln n

n−k−k

6For all non-public IV schemes, i.e. ESSIV/plumb IV, the ratio is 62blocks/1KB.
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we calculate,

k P (k, 2128)

1010 1.47× 10−19

1011 1.47× 10−17

1012 1.47× 10−15

1013 1.47× 10−13

For comparison, the chance of guessing the correct 256-bit key with a single
guess has a probability of 10−77. We find that an attacker has a much better
chance of finding confidential information by searching for block collisions. Of
course, the difference is that a compromised key will reveal all information,
while a collision reveals a random piece of information. In fact, the revealed
information is meta-information, that is the XOR difference between two plain-
text blocks. An attacker must have an idea of the content of block to extract
information about the other. So, despite the improved probability for this
attack path, the security implication are not as grave.

After having seen a few examples, we will investigate the growth of this
function.

4.2.3 Inflexion point

Figure 4.1 gives a logarithmic plot of 1− P (k, n) for k. An obvious feature of
this figure is the jump of the probability around 1019. We will call the point
with the largest growth the inflexion point. Translated to storage space, this
inflexion point is reached for a 145 million terrabyte storage.

The point of the biggest growth can also be found numerically. It is at
1.844× 1019. But this is just equal to

√
2128, which is also known as birthday

boundary. Why do we encounter the birthday paradox here?
The reason is simple. Both, the birthday paradox and the content leak

attack, occur because of collisions among values chosen from a single set. For
the birthday attack, those values are birthdays drawn from the set of dates in
year (hence its name). In our collision scenario, it is ciphertext drawn from
the exhaustible set of ciphertext. So, the collision problem and the birthday
attack are the elementary problem.

An attacker can relay on the mathematical fact, that is very likely to see
duplicate keys – when chosen randomly – after having seen

√
2n keys (n is

the key size). A more in-depth treatment of the birthday paradox is given in
[BK04].

4.2.4 Extending the attack

Another information is available to the attacker. Any succeeding identical
pair of ciphertext, that follows the initial identical cipher pair, hints that the
corresponding plaintext is equal. The reason is simple. Assume the attacker
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Figure 4.1: The inflexion point of the collision function

has found Ci = Cj , and the attacker finds Ci+1 = Cj+1 in addition, then he
knows from (4.5) that

Ci ⊕ Cj = Pi+1 ⊕ Pj+1

holds for the latter pair. But the left side of the equation is zero, therefore the
right side has to be zero too. Hence, Pn+1 = Pm+1. This reasoning can be
extended to cases Ci+2 = Cj+2, and so on.

4.3 Watermarking

The probability calculated above is for an unintended block collision. This
section assumes the IV mode is public. With such a mode, the IV is pre-
computable by an attacker, and we will see that due to this a cipher block
collision can be created artificially. By means of collisions, watermarks are
created that can be used to tag data. The data becomes detectable without
the need for the correct cipher key.

Before we discuss this attack, we extend our notation for cipher- and plain-
text block numbering. Using an m-bit cipher, there are (512 × 8)/m cipher
blocks in a sector. In this section, Ci,k shall denote the cipher block stored in
sector i and which has a relative position k− 1 to the sector start measured in
m-bit cipher blocks. Ci,0 is the IV for sector i.

Assume the attacker writes to two blocks i and j, then he can deduce the
IVs by computing IV(i), IV(j). The attacker is also aware that by (3.2), the
plaintext is XORed with the IV prior to encryption. An artificial cipher block
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collision can now be generated by,

Ek(Pi,1 ⊕ Ci,0) = Ek(Pj,1 ⊕ Cj,0)
IV(i)⊕ Pi,1 = IV(j)⊕ Pj,1

Pj,1 = IV(j)⊕ IV(i)⊕ Pi,1

When Pj,1 is written to sector j after it has been encrypted to Cj,1, the first
cipher block in sector j will be equal to the one of sector i, Ci,1.

No additional information about any plaintext can be extracted by an at-
tacker by the means of this cipher collision as outlined in the last section. This
is because the attacker created Pj,1 on his own, and therefore has to know Pi,1.
What is gained by the actions in this section is that an attacker can find data
tagged by him on an encrypted disk. What might be surprising is that this
attack is independent of the cipher in use and independent of the key in use.
This is called watermarking.

The cipher block chaining spans across the whole sector, and as we found
in Section 4.2.4, the encrypted content of both sectors are equal, when all
plaintext blocks following Pi,1 and Pj,1 are equal. This can be provoked by an
attacker easily. But an attacker might choose a point k from which on Pi,k and
Pj,k start to differ, i.e. Ci,k and Cj,k differ.

Given a 128-bit cipher and assuming 4096-bit sectors, there are 32 valid
choices for k. Hence, an attacker can vary among 32 different watermarks.
This is about 5 bits of external visible information, that can be access without
the cipher key.7 By using multiple watermark, an attacker might be able to
encode more information.

What kind of confidentiality is violated when this attack requires the at-
tacker to know the plaintext in advance? This is a valid question. The data
itself cannot be the cause for a confidentiality violation here, as the attacker
already must know the plaintext. This attack allows an attacker to proof the
existence of data. This information is meta data, information about data.

This can become relevant for the user of an encryption system that contains
copyrighted material, and the user has copied the material without permission.
An attacker can use the watermark evidence to proof the copyright violation,
even without knowing the encryption key. The presumption of innocence will
quickly fade in court, when the party asserting a copyright infringement can
produce an RSA signature extracted from watermarks found on the suspects
disk.

Hence, the user has a valid interest that not only the information is con-
fidential, but also the information about the existence of previously tagged
data is confidential. This is a typical case, which is covered by the class of
distinguishing attacks. As we mentioned in Section 3.4, a security proof tries
to show that a cipher mode is indistinguishable from a random permutation.
What we have seen with the watermark attack is actually the implementation

7This is not exactly 5 bits of information, because the attacker needs the first block as
start marker, as the absence of a watermark cannot be used for information encoding.
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of a distinguishing attack, as it is considered a security hazard, if an attacker
can distinguish the encryption of the specially crafted plaintext from a random
permutation.

Having looked at the practical implications of this attack, we will demon-
strate, how easily the attack can be implemented with plain-IV. A practical
problem for an attacker is to obtain the sector numbers i, j. If an attacker
does not place the watermarked data on disk by himself, he has little chance to
control the process of copying. Hence, even if any possible IV can be deduced
by knowing the sector number, it is simply not implementable in the real world,
as the attacker has no control over the sectors his prepared data ends up in.

4.3.1 Attacking the plain IV scheme

What is more likely to occur in a real system is that subsequent parts of a
file are written to subsequent sectors. For instance, the ext2 file system used
under Linux features a 4K block size by default, and many other file system do
it alike, as it is simply not economical to do disk space management on sector
level. Thus, writing 4K data to a file results in at least 4 sectors put on disk
unfragmented.

With plain-IV, the IV progresses with a much more foreseeable pattern.
Given the sector number n, we examine the bitwise difference from n to n + 1
and n + 2. Assume the least significant bit of n is 0. Then (n + 1)⊕ n = 1. If
the least significant bit (LSB) n0 of n is not zero, then the LSB of n+1 has to
be zero, and it follows (n + 1)⊕ (n + 2) = 1. For (n + 1), either the backward
bitwise difference or the forward bitwise difference is 1.

Given an arbitrary plaintext block P , it is possible to let P encrypt to the
two identical ciphertext blocks, when we can store encrypted plaintext to the
first plaintext blocks of three adjacent sectors. To achieve this, we create P ′

according to
P ′ = P ⊕ 1

and write three sectors with P ′, P, P ′ as their first plaintext blocks. From the
last paragraph we know, that either the backward bitwise difference for (n+1)
is 1 or the forward bitwise difference. If we assume (n+1) to be the number of
the sector in the middle, we can demonstrate this by investigating two disjoint
cases.

Assuming LSB(n) = 0, then we have

Ek

(
IV(n)⊕ P ′) = Ek

(
IV(n + 1)⊕ P

)
Ek

(
n⊕ P ⊕ 1

)
= Ek

(
n⊕ 1⊕ P

)
Assuming LSB(n + 1) = 0, we conclude

Ek

(
IV (n + 1)⊕ P

)
= Ek

(
IV (n + 2)⊕ P ′)

Ek

(
(n + 1)⊕ P

)
= Ek

(
(n + 1)⊕ 1⊕ P ⊕ 1

)
Ek

(
(n + 1)⊕ P

)
= Ek

(
(n + 1)⊕ P

)
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This shows that either the first cipher blocks of sector n and n + 1, or
n + 1 and n + 2 are equal. The information encoding technique by choos-
ing a break point in the sequence of collision can be applied here to encode
sector-size/cipher-block-size different watermarks. By using several water-
marks, probably more information is encodeable.8

To find the watermark, an attacker can search the disk sector-wise, compar-
ing the first block of the sector with the first block of the preceding sector. If
they match, the watermark is found. As shown in Section 4.2, the probability
for a random match is so small, that it is reasonable to assume that this is not
a coincidence.

The disk search can be done in a single pass, and is much more feasible
than finding two identical blocks, that are scattered on the disk as assumed in
Section 4.2. A complete description of watermarking can be found in [Saa04].
This attack has been demonstrated to work in a real implementation. The
attack can be defeated by using ESSIV or by totally diverting from CBC.

4.4 Data modification leak

CBC encryption is recursive, so the nth block depends on all previous blocks. A
change in a preceding block causes the corresponding and all subsequent cipher
blocks to change unpredictably. This property is called error-propagation. But
the other way round – changes to nth causing changes to n − 1 . . . 1 – would
also be nice. Why?

The weakness becomes visible, if storage on a remote computer is used,
or more likely, the hard disk exhibits good forensic properties. The point is,
when the attacker has access to preceding (in time) ciphertext of a sector,
either by recording it from the network, or by using forensic methods, he can
guess data modification patterns by examining the historic data. If a sector is
overwritten with a partially changed plaintext, there is an amount of bytes at
the beginning, which are unchanged. This point of change9 is directly reflected
in the ciphertext. Hence, an attacker can deduce the point of the change in
plaintext by finding the point, where the ciphertext starts to differ.

This weakness can only be cured when the encryption is randomised. A
general approach to probabilistic encryption is given in [GM84]. In brief, a
random salt is added to the encryption result, making the ciphertext larger than
the plaintext. With this expansion, it is possible to map the same plaintext
to multiple ciphertexts. So, an attacker can gain no information about the
modifications made. He cannot even distinguish a plaintext change from a
simple plaintext rewrite.

Without storing additional salt information, the encryption function be-
comes bijective. Pairs of identical plaintext will always encrypt to identical

8Assuming an ideal environment, where no other watermarks are present on the disk,
no incidental cipher block collision occurs, and no data is duplicated by the file system by
defragmentation or other disk management activities

9aligned to the cipher block size boundaries
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ciphertext. Omitting a salt is more convenient for hard disk encryption sys-
tems, because access of the sector i of the virtual encryption can be mapped
to the access of sector i on the backing device. Also, no disk space has to be
reserved to store a salt.

Without a salt, there are several approaches to fix this information leak
at least partially. Plumb-IV is an option for CBC because of the backward
propagating nature of encryption Plumb-IV installs with its IV calculation.
Other approaches are wide-block cipher modes as introduced by SISWG. An
attacker will still be able to distinguish a rewrite and a plaintext modification,
but he will only be able to do that at sector level. So, the sector is not a
transparent structure anymore, as in regular CBC or in any narrow SISWG
cipher mode. ABL can be used to create larger structures than block size that
are opaque, but the price for this is that all sectors of these larger structures
have to be accessed when a single sector is read or written.

4.5 Malleability

Non-malleable cryptography is introduced in [DDN98]. It is an extension of
the already strong notation of semantically secure cryptography as defined by
[GM84].

Informally, malleability is defined, that given a ciphertext E(α), the chance
of generating a different ciphertext E(β) does not change, where the plaintext
β is related to α a preliminarily chosen way, R(α, β).

The formal definition given in the original paper is too broad to show the
malleability of CBC. Therefore, we will narrow it down to a more specific
non-stochastic variant.

Definition 4 A cipher mode is called malleable, if there exists a function f
on ciphertexts, a function g on plaintexts and a range 〈k, i〉 such that for all
ciphertexts C,

D(f(C))〈k, i〉 = g(D(C))〈k, i〉

The identity functions for ciphertext and plaintext are too trivial to proof mal-
leability.

It can be easily verified that the formal definition above fulfils the informal
probabilistic definition of the previous paragraph, because if there is a func-
tion set (f, g), the probability of generating a related plaintext defined by g
becomes 1, if f is applied to the ciphertext.

The essence of our definition is when a modifications is made by f , the
changes can be tracked in the decryption process. A cipher tries to prevent
such tracking deliberately, so it should also be prevented by the cipher mode
design.10 The function g is used to reflect the knowledge, that can be gained by
tracking the differences. Proofing that there is a single pair (f, g) is sufficient
to mark a cipher mode as malleable. But as our definition is more narrow than

10Cipher attacks based on plaintext modifications are used in differential cryptanalysis.
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the original, there are other malleable cipher modes that are not matched by
our definition.

4.5.1 The malleability of CBC

CBC is a malleable encryption scheme. The decryption structure of CBC is
the source of this weakness. As we can see in its definition, CBC decryption
depends on Ck−1. An attacker can flip arbitrary bits in the plaintext Pk by
flipping bits in Ck−1. More formally11, if

C = ECBC(P )

then a pair of functions (f, g) can be given as

f(C1 || ... || Cn) = C1 || ... || Ck−1 ⊕M || ... || Cn

and
g(P1 || ... || Pn) = P1 || ... || Pk−1 || Pk ⊕M || ... || Pn

that predicts the changes correctly at position k (for a single block i = 1). To
proof this assertion in more detail, we investigate how Pk is decrypted by (3.3),

Pk = Ck−1 ⊕D(Ck)

If Ck−1 is modified by f to be C ′
k−1 = Ck−1 ⊕M , then the decryption for Pk

will be changed to:

P ′
k = C ′

k−1 ⊕D(Ck) = Ck−1 ⊕D(Ck)︸ ︷︷ ︸
Pk

⊕M = Pk ⊕M

The plaintexts in the intervals [1, k−2] and [k+1, n] are unchanged. Hence,
g can predict them trivially from P . What is not predicable is Pk−1, because
it is partially deduced from decrypting the modified ciphertext C ′

k−1. Every
underlying cipher with a reasonable diffusion will propagate a single bit change
among the whole plaintext block in the decryption process. Thus, Pk−1 is not
predicable and will in practise produce a pseudo-random output.

The first block of the CBC ciphertext stream is also malleable, when the IV
can be modified by an attacker. This may be the case for communication data
streams. For hard disks this cannot happen, since the IV is usually derived
from the sector number. The attacker can only influence the IV by moving the
data.

4.6 Movable cipher blocks

An attacker can move, swap, and copy plaintext as he likes in a CBC ciphertext
vector. CBC decryption depends on two variables, Ci−1 and Ci. Both can be
manipulated by an attacker.

11The IV parameter for ECBC has been intentionally omitted.
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To make meaningful manipulations, an attacker has to replace the pair Ci−1

and Ci with another ciphertext pair, Cj−1 and Cj . Three plaintext blocks will
be affected, Pi−1, Pi and Pi+1, as Ci−1 and Ci are used in the decryption of
these three blocks. Originally, the plaintext block are decrypted according to:

Pi−1 = D(Ci−1)⊕ Ci−2 Pj−1 =D(Cj−1)⊕ Cj−2

Pi = D(Ci)⊕ Ci−1 Pj =D(Cj)⊕ Cj−1

Pi+1 = D(Ci+1)⊕ Ci Pj+1 =D(Cj+1)⊕ Cj

Suppose Ci−1 and Ci are substituted by Cj−1 and Cj . Before we have a
look at the consequences of this modification for the plaintexts Pi−1, Pi, Pi+1,
we assert that from the equations above the following relations can be derived:

D(Ci+1) = Pi+1 ⊕ Ci D(Cj−1) = Pj−1 ⊕ Cj−2

After replacing Ci−1 with Cj−1 and Ci with Cj , the affected plaintext blocks
decrypt according the following equations,

P ′
i−1 = D(Cj−1)⊕ Ci−2 = Pj−1 ⊕ Cj−2 ⊕ Ci−2

P ′
i = D(Cj)⊕ Cj−1 = Pj

P ′
i+1 = D(Ci+1)⊕ Cj = Pi+1 ⊕ Ci ⊕ Cj

As you can see the plaintext block i is replaced by the plaintext block j.
The other modifications cannot be suppressed by an attacker.

This attack is also known as copy&paste attack. It can also be used to
read ciphertext the attacker is not authorised to do. Assume the attacker is
a legitimate user of a multi-user system, and that the attacker has obtained
access to the physical storage. He can copy ciphertext from a protected file to
sectors allocated to a file the attacker has access to. By accessing his file, he
will be able to read ciphertext he is not authorised to read. This attack does
not work with other cipher modes – i.e. LRW, EME, ABL, just to name a few.

4.7 Threat models

Common goals of data and communication security are:

Confidentiality, the plaintext is not disclosed to anyone, except to the party
possessing the correct secret.

Integrity, the plaintext has not been modified, or the modification is de-
tectable.

Authenticity, the source of the plaintext can be doubtlessly identified. This
goal requires an unaltered message, hence this goal depends on integrity.



78 CHAPTER 4. CBC ATTACKS

Confidentiality deserves a bit of clarification. As we have seen in the wa-
termarking attack, the existence of specially crafted plaintext is detectable by
an attacker without the encryption key. Certainly, some kind of confidentiality
requirement is violated, but in contrast to a regular confidentiality violation,
no content is revealed to the attacker, as he must know the crafted plaintext
to detect it. What is revealed here is not data – as it is already known – but
meta data, that is the existence of data.

To discuss threats arising from this special confidentiality violation, we
define

Tag Confidentiality, the plaintext remains undisclosed to everyone, except
to the party possessing the common secret. The plaintext is not recog-
nisable even if it has been tagged by an attacker.

Further situations in which an attacker might gain information about the
encryption system are:

Cold read: The data storage is exposed to an attacker, when it is not in use.
For instance, this might be physical theft of the hard disk, or prosecu-
tion of law enforcement agencies. The security properties relevant for
this threat model are confidentiality and tag confidentiality. Applicable
attacks are the content leak attack, and the watermarking attack.

Hot read: An attacker has read access to the data storage, while it is in use.
Real world examples for this situation are an unreliable backup tape
operator, or network attached storage devices. In addition to previous
attacks, data modification patterns are revealed to an attacker as well.

Hot write: An attacker has read/write access to the data storage while it is
being in use. There are 3 different severity levels for data modification
threats:

1. undetected meaningful modification,

2. undetected meaningless modification,

3. detected modification.

Undetected meaningful modification can lead to unauthorised system ac-
cess, when for instance a security map is modified. Many UNIX file sys-
tems store permissions in a bitmap12. In conjunction with the CBC data
modification attack, this threat becomes serious, and even more grave,
if the location of the security map is hinted through the watermarking
attack as well. Moving ciphertext around on disk might result in the
break down of the user privilege system. For instance, an attacker might

12ext2fs stores the access permission in the i flags field in the inode table.
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modify /etc/passwd or /etc/shadow of a UNIX system13, or overwrite
the physical content of a file the attacker has access to with the content
of a protected file.

Undetected meaningless modification can cause uncontrolled system dis-
ruption. Corrupting the database of firewalling rules might cause an im-
proper configured boot system to skip the firewalling setup and proceed
regularly leaving insecure services open to an attacker.

Detectable modification can help to stop threat like the one outlined
above. To ensure that modifications are detectable, we need integrity and
authenticity. The encryption block layer can immediately cease all disk
access to a media, when the authenticity information signals tampering.

13This is trivial to implement in Linux when using CBC plain-IV. Any user can use the
fibmap system call to query the kernel for the logical block number for any file. Using this call
for /etc/passwd and a private file will reveal the IVs of both files for any public IV scheme.
The attacker can then craft a modified passwd file taking into account the IV difference. The
modified passwd can include his user name with user ID zero, which is equivalent to superuser
under Linux. To compromise the system, the attacker has to copy his modifications over to
the location of /etc/passwd.





Chapter 5

Password management

Querying Google for “Security Hardware” results in about 72 million hits.
Many vendors advertise key tokens, tamper-resistant smart cards, and bio-
metric access devices. However, the majority of these devices only work with
the software they came with, and are not compatible with a broad range of
security applications including hard disk encryption systems. Because of this
and probably also because of the additional costs, the majority of users do not
employ such devices. The majority of consumer hard disk encryption systems
is based on regular off-the-shelf hardware. In this chapter, we will see which
requirements have to be met that hard disk encryption systems are reasonably
secure with regular hardware.

5.1 Key hierarchies for passwords

Key hierarchies are well-known constructs in cryptography. Key material is
treated as data, encrypted and handled like data. PGP uses key hierarchies to
counter the performance penalties of public key encryption systems. The same
is true for the Secure Shell Protocol (SSH). A session key for a regular block
cipher is generated on the fly and sent via public key encryption to another
party. Upon successful decryption of the session key by the other party, this
session key can be used by both parties for further communication.

Another example for key hierarchies is SSL. SSL supports public key infras-
tructures (PKI), which can be depicted as tree of signatures originating from
a set of trusted root signatures. Regular web browsers come packaged with a
set of well known public keys, for instance keys of Verisign, Thawthe or RSA
Data Security Inc. These companies offer key creation and signing services to
their clients. We can use the idea of key hierarchies in hard disk encryption as
well.

81
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5.1.1 A simple design for multiple passwords

Encryption data by a single key means that this key can only be changed by
re-encryption the whole data with the new key. For large amounts of data, such
a transition is not easily done on-the-fly and also, re-encryption is a lengthy
process, which would cause unacceptable interruption to the whole system if
done offline. Furthermore considering the storage properties of magnetic media
used nowadays, it is far from sure that re-encryption is feasible with respect to
the destruction (overwriting) of the data encrypted with the obsolete key.

A key hierarchy solves the re-encryption problem and makes the overwriting
problem easier to solve. The key utilised for encryption is not entered directly
(or deduced by hashing or other means), but stays fixed and its material is
in turn stored encrypted with another key. To avoid confusion, we will call
the key that encrypts the bulk data master key, and the key that encrypts the
master key’s material user key. The master key’s encrypted key material must
be stored, and this requires only 16 to 32 bytes. In the next chapter, we will
see that this parsimony is not always a good property.

Having a second layer of keys, changing the user key becomes easy: The
master key is recovered from the decryption via the old user key, it is encrypted
with the new user key, and the encryption result is stored in place of the old
encrypted copy. The bulk of data does not have to be re-encrypted as the
master key does not change.

A second key layer does also add another possibility, namely multiple keys.
The master key can be encrypted multiple times by different user keys, thus
enabling the system to have more than one access path to its data.

5.1.2 Secret splitting

By storing multiple copies, the user can build up access conditions with as
many disjunctions as he likes, possession of <user key 1> or <user key 2>
or <user key 3>. What is missing is conjunctions.

Secret splitting is a technique that allows a secret to be reconstructed only
if all sub parts are present. In general, the secret can be any arbitrary raw
data. This technique enables the user to not only use disjunction in the access
condition, but also conjunctions in any combination or enclosure, for instance,
(<user key 1> and <user key 2>) or <user key 3>.

A simple secret splitting method for a message M is the generation of
S1 . . . Sn−1 random messages of the same size as the original message M , and
the computation of

Sn = M ⊕
( n−1⊕

i=1

Si

)
(5.1)

The contents of M will be split across n parts S1 . . . Sn. We can transform this
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equation into

M = Sn ⊕
( n−1⊕

i=1

Si

)
=

n⊕
i=1

Si (5.2)

This also gives the equation to reconstruct the original message from all parts
Si. As we can see, every sub part is treated equally. Each sub part affects
every output bit, and every possible message can be created be modifying a
single Si. The field addition could be replaced by a Galois Field multiplication
to produce another secret splitting scheme. Then Equation (5.1) has to be
changed to calculate the multiplicative inverse. See [Sch96], pp. 70.

5.1.3 Threshold schemes

Even though any combination can be built by disjunction and conjunction, it
has limitations. Consider the problem posed by Liu in [Liu68],

Eleven scientists are working on a secret project. They wish to lock
up the documents in a cabinet so that the cabinet can be opened if
and only if six or more scientists are present. What is the smallest
number of locks needed? What is the smallest number of keys to
the locks each scientist must carry?

The minimal solution is “462 locks and 252 keys per scientist”. This number
grows exponentially with the number of scientists involved. Threshold schemes
have been invented to have more modest requirements. A (k, n)-threshold
scheme allows access to a secret, if at minimum k secret fragments out of n are
available.

A threshold scheme can be constructed by the means of an algebraic system
of polynomials. An example of such a scheme is developed in [Sha79]. A
polynomial of order k − 1

f(x) = ak−1 xk−1 + ak−2 xk−2 + · · ·+ a1 x + a0

with a1 . . . ak−1 random constants and a0 equal to the secret can be used to
implement the threshold scheme. This polynomial is evaluated n times and
handed out to the distinct parties as points in a 2-dimensional plane (xi, f(xi)).
A joint effort of at least k parties can reproduce all coefficients of the k − 1
order polynomial by solving the following equation:

f(x1)
f(x2)
. . .

f(xk−1)
f(xk)

 =


a0 a1x1 . . . ak−1(x1)k−1

a0 a1x2 . . . ak−1(x2)k−1

. . . . . . . . . . . .
a0 a1xk−2 . . . ak−1(xk−2)k−1

a0 a1xk−1 . . . ak−1(xk−1)k−1


Therefore, the secret contained in a0 is recoverable. Fewer than k sub parts

do not reveal any information for a brute-force attack, as the algebraic system
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is under-determined and has additional degrees of freedom that span across
the field’s entire value domain. To make this scheme better implementable,
the coefficients should be elements of a Galois Field.

5.2 Anti-forensic data storage

5.2.1 The problem with magnetic storage

According to [Gut96], hard disks have a very long memory. Even if data
appears to be gone, even if the disk has been reinitialised with zeros, even
if you invoked the security-erase ATA command of your IDE hard disk, data
can be easily recovered. Special care must be taken to destroy data properly.
Two level key hierarchies must store the encrypted master key on disk. Extra
precaution must be taken for this data, since data is not guaranteed to be ever
erased. Bad block remapping of modern firmwares supports data safety but
weakens the opposite, data destruction.

Unintended remapping of sector data is especially bad for key material
created via a key hierarchy, as the encrypted key material is typically very
short and can be accommodated by a single sector in a reserved remapping
zone.

5.2.2 Design

If the probability to destroy a certain block of data is 0 ≤ p ≤ 1, then the
probability that the block survives is 1 − p. Given a set of data consisting of
n data items, the probability to erase the whole data set becomes worse since
pn becomes smaller as n becomes larger. But the probability that the whole
set survives, (1 − p)n, becomes smaller as well with increasing n. If (1 − p)n

becomes smaller, than 1 − (1 − p)n must become larger, which is exactly the
chance that the whole block does not survive. The reader should notice the
subtle difference between “whole block is erased” and “whole block does not
survive”. The former describes that all items are destroyed. The latter means
that one data item or more is destroyed.

Usually, you cannot control p, as this depends on the hard disk and the
firmware. But the size of the data set n can be chosen by the user. By making
n larger, one can make the chance of destroying at least one data item arbitrary
large. For instance, assume the backing device to be a redundant RAID array
such that it is extremely hard to erase data on it, say p = 0.01. We can still
destroy one of 1000 data blocks almost for sure with a probability of 0.99995.

After this insight, the remaining task is to construct a data vector from an
original data item and to make the destruction of a single vector part crucial
for the survival of the whole information contained in the data vector. This
goal can be achieved if the information of a single data item D is distributed
uniformly to the larger data vector. “Uniformly” in this context refers to
the property that any data item is equally important to extract the original
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information D. D can be an encrypted master key or some other piece of data,
that we want to be revocable from a hard disk.

The mapping from D to the data items of the data vector S must fulfil
a few requirements. When D is the domain of D and S is the domain of the
items of the vector S, then there must be a function S to generate a mapping
D → Sn. Also, there must be a function D to reconstruct D, so Sn → D. We
require this reconstruction function to fail completely if one of the items of S
is missing. This can be expressed as

P[D(s1, . . . , si−1, x, si+1, . . . , sn) = D] =
1
|D |

for all s1, . . . , si−1, si+1, · · · ∈ D and for all i = 1, . . . , n. Any D is equally likely
to be generated when a single si is missing, or in other words, D has a strong
dependency on all arguments of D.

An ad-hoc method to create this dependency can be stated: For the derived
data set S = s1, s2, . . . sn, generate s1 . . . sn−1 random data items and compute
sn as

sn = s1 ⊕ · · · ⊕ sn−1 ⊕D

The reconstruction can be done by computing

D =
n⊕

i=1

si

that is XORing all data items together. If one item si is missing, D cannot be
reconstructed, since every single si affects the entire result. This simple scheme
is also a form of secret splitting as seen in Section 5.1.2, but instead of handing
out the parts to different parties, they are all stored on disk.

As we can destroy a single unspecific data item easily as shown in the
previous few paragraphs, and as a single missing data item makes the base
information unrecoverable, the data item D can be made erasable. When the
user desires to revoke D, all items si are overwritten and D, which is contained
in these items, is erased with a significantly improved probability.

We can improve this scheme a bit. A bit-change in si will only cause
a bit-change at the corresponding position of D. Assume si to be partially
destroyed in a certain range, then D is unrecoverable at exactly the same
range. Only a full destruction of a single si causes the entire information of D
to be unrecoverable. This property can be enhanced by making the recovery
scheme sensitive to bit-errors.

The first approach is to insert a diffusion element into the chain of XORs.
A cryptographic hash function can be used as such an element. Assume
s1 . . . sn−1 to be random items again, then we compute qi as hash chain of
these items,

q1 = s1

qi = H(qi−1)⊕ si (5.3)
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0 ⊕

s1

H ⊕

s2

H ⊕

s3

. . . H ⊕

sn−1

H ⊕

sn

D
I

Figure 5.1: AFsplitter

The last item sn is chosen as

sn = qn−1 ⊕D

The diffusion of sn has to be omitted, as the hash function is not invertible.
This degrades security marginally. The reconstruction can be carried out by
computing qn−1 as in (5.3), and evaluating:

D = qn−1 ⊕ sn

This yields the original D.
As illustration, you can find the overall composition in Figure 5.1. H de-

notes the diffusion element1. In the splitting phase, s1 to sn−1 are randomly
generated and the intermediate result I is computed. Then sn computed as
sn = D ⊕ I. When recovering the base information, the whole chain is com-
puted as shown resulting in D, the original data item.

A sample implementation of the scheme as given in Figure 5.1 is available
at [Fru04]. It is called AFsplitter, short for anti-forensic splitter. In the fol-
lowing chapter, we use terms like AFsplit or AFmerge to refer to information
decomposition S or reconstruction D.

It is also possible to use a cipher instead of a hash function. The design
of Figure 5.1 is similar to CFB encryption but without storing the ciphertext.
CFB has an infinite error propagation, and this property is crucial for the
applicability as information splitting technique. It is possible to use any other
mode with this property, for instance ABC, IGE, or PCFB.

CFB is easy to implement, but if for some reason the implementor wants
to stick to a hash function, the scheme can be made perfect for the diffusion of
the last block sn even with a hash function. As you can see from Figure 5.1,
a single bit of sn does not affect the whole value of D. This shortcoming can
be removed by using obfuscating s1 with the help of sn. Computing s1 . . . sn

as in the original scheme, then calculate

sn+1 = H(sn)⊕ s1

1The diffusion element H with an arbitrary input and output size can be con-
structed from a cryptographic hash h with fixed output size. Simply calculate H(q) as
h(0 || q) || h(1 || q) || h(2 || q) || · · · until enough data is obtained.
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and store the result in place of s1. This is invertible,

s1 = H(sn)⊕ sn+1

and must be computed before the original reconstruction process can start.
The difference is, if sn is partially unavailable, s1 will be totally different,
because sn is diffused by H. As you can see from Figure 5.1, any error in
s1 will be propagated until the end of the chain, causing D to be different.
Thus, diffusion even for the last element sn is possible even with non-invertible
diffusion functions.

5.2.3 Parameter determination

As the diffusion element in the information splitting design causes a bit error
in the data storage to have devastating effect on the output, we focus on the
probability of destroying bits, or in other words producing bit errors. Given
the probability p that a bit is destroyed, 1 − p denotes the probability that
a bit survives. The probability, that an entire data set with n items, each
item k bits long, survives, is (1− p)n k. We would like to protect an encrypted
version of the master key, which is k bits long. Our aim is to make the survival
probability equal to the probability of guessing the master key with a single
guess, which is 1

2k .

(1− p)n k =
(1

2

)k

By applying ln to both sides and cancelling k, we obtain

n =
ln 2

ln(1− p)
(5.4)

n is also known as the inflation factor, because the underlying data item is
inflated to take n-times the size of the original. Note that n does not depend
on the length of the key k. To give the reader a feeling for the magnitudes,
selected values of p with the corresponding inflation factor are presented in the
following table.

p n

0.05 13.5
0.01 67.0

0.001 692.8
0.0001 6931.1

5.3 Passwords from entropy weak sources

5.3.1 The problem

User supplied passwords have usually two unwanted properties. They are short,
and often are based on dictionary words. Both emerge due to the user’s pref-
erence for easy memorable short passphrases. From a cryptographer’s point of
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view, the problem with short strings as well as English words is that they lack
entropy.

A password generated by the standard Unix command mkpasswd will give
you a 13 character random string, where the term “character” refers to a set
of 64 symbols2. For better illustration, these are four passwords generated by
mkpasswd: DWy1XBje4dPDk FwgoS2m.kZisI gfr2sist.GqIA ftZZgfLdJR236.
If the reader succeeded to remember a single one, his task to remember a
modern 128-bit key would be only half way done, as a single string accounts
only for 78 bit entropy3. All of these strings have to be remembered to provide
enough entropy for a 256-bit key.

The usual passphrase length is nowhere near that, nor is it is randomly
generated. Choosing a regular English word with 10 characters yields 12 bits
entropy4. The entropy gap to a 128 bit key or a 256 bit key is highly visible.
A potential attacker could easily traverse a dictionary instead of the whole
password domain. Even if these 10 characters are randomly generated, the
passphrase domain will only be 60 bits when using 26 symbols/character. In
1999 distributed.net compromised a 56 bit DES key within 22 hours, so we
need more than that.

Despite new techniques to make passphrases more memorable for peo-
ple5, the technological close in on the brute force resistance of low entropy
passphrases will push the requirements for their size. As technology advances,
larger key sizes become attackable. The logical consequence is to increase the
key size, but this implies that the underlying passphrase has to be lengthened
as well. As technology advances much faster than the humans ability to re-
member arbitrary passwords, the gap to the feasibility of dictionary or low
entropy attacks becomes smaller everyday.

5.3.2 PBKDF2

There is no deterministic algorithm that can magically sprinkle entropy on
top of a short passphrase. Determinism of algorithms and the idea of entropy
are diametrical concepts. The following scheme does not improve insufficient
entropy, but it artificially hampers the computation of a single brute force
operation. A single brute force trial consists of (1) setting up the block cipher
with a key derived from the attacked passphrase, (2) decryption of a cipher
block likely to contain known information6, and (3) checking the result against
plausible outcomes. Making regular decryption slower is not desirable, because
it would also hamper the legitimate use of the system, hence the subject of
interest is the key setup phase.

By inserting a CPU intensive transformation into the key setup path, the
single brute force operation can be made much more expensive to carry out

2A-Z, a-z, 0-9, ’/’, ’.’
3

Q13
1 64 = 278

4The entropy per character is less than 1.2 bits according to Shanon’s experiment [Mah00]
5See the NIST report on picture passwords [NIS03c]
6such as English text or a file system header
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without impairing regular use. Mathematically, the CPU intensive transfor-
mation is a map of the given password to the key domain. This function does
not have to be invertible. Thus, instead of computing Dk(c), the attacker is
forced to compute Df(k)(c), where computing f accounts for the majority of
processing time.

The trick is that the intensity of f(k) can be adjusted by the user at free
will. The user will choose an intensity level that makes f(k) computable on
his encryption device in a reasonable amount of time (one to five seconds).
By inserting the computation of f(k) into the key setup phase, we artificially
hamper the key setup. Cipher designers have a different aim. They try to keep
key setup time as low as possible. This is ok, as a cipher designer assumes the
key to have enough entropy. But a key derived from a short user password
does not share this property.

What is the gain by artificially hampering the key setup? Compare a ran-
dom key k1 of size 2x with a second key of size 2y that is obtained with k2 = f(p)
from a password p with an effective entropy of 2x. There is only one attack
path for k1, a regular brute force attack on the x-bit key domain. This implies
2x steps of work. For k2 derived from f(p), there a two attack paths: a brute
force attack on the y-bit key domain of k2 or attacking the x-bit password
domain of p. By various extension schemes7, the number of bits y derived
from a password can be made as large as necessary to provide security over the
lifespan of the data. The size x of the password domain cannot be adjusted,
as the human’s capability to remember arbitrary strings does not scale at all.
While the x-bit key k1 might become attackable over time, the y-bit key k2

stays secure. The only chance for an attacker to attack k2 is by attacking it
via the x-bit password domain. But this path is blocked by the CPU intensive
computation of f(p). This blocking does not come from an increased complex-
ity, as in both cases an attacker has to do 2x steps of work. The difference
is that these steps are much harder for the attack path via f(p) as it requires
computing f(p) for every attacked password.

Under two assumptions, this hardening is very effective. Challenging a
60-bit password requires computing 260 f(p) results. This would take 1010

years, when the attacker can compute one result every second. However, this
calculation is too naive. It assumes (1) the attacker has the same processing
capabilities as the user, and (2) there is no technological growth. Both assump-
tions are untenable, but before we relax them in the next section, we want to
know if there is a way for an attacker to circumvent the computation of f(p).

An attacker needs access to a precomputed dictionary containing the result
f(p) for every password, so that instead of computing f(p), he can lookup
the result for f(p) in his dictionary. A complete enumeration of the password
domain generated by mkpasswd (of the size 278), would require 8 yottabytes8

storage, which might be achievable one day9. Therefore, instead of utilising a
generic function f(p), it is advisable to make the function not only password

7For instance, the hash extension trick we have seen in the AFsplitter section
8230 Petabytes
9Cryptographers tend to be satisfied only when the storage complexity exceeds 1078, the
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dependent, but also dependent on a random value s. With this measure, an
attacker would have to have a dictionary available, which contains f(p, s) for
all possible passwords p and possible values s.

By adding a bit to s, the storage requirements for all precomputed dictio-
naries doubles. s does not have to be secret and can be stored on disk, so
it is relieved of any size constraints imposed by the limitations of humans to
remember random content. Hence, the solution is quite simple, make s that
large that storing a dictionary for all passwords and values s is unlike to be-
come feasible for the time span one would like to keep the data secret. s is
a typical salt, as it serves to randomise the process and does not have to be
secret.

Inside PBKDF2

Hash functions qualify best for the purpose of constructing a password-based
key derivation function, as they are well defined for variable sized inputs such
as passphrases. To make them CPU intensive, one has just to iterate them a
number of times. PBKDF2 (presented in RFC 2898 [Kal97]) is based on this
idea. PBKDF2 stands for “password-based key derivation function, revision 2”.

When iterating the hash function h, we have to assure that by repeatedly
applying it the co-domain of h does not degenerate into a smaller set of values.
This smaller set is called a cycle. If a function with a domain of size n provides
n different values for n successive applications of h to an arbitrary start value,
the function is said to be cycle free.

Formally, a function h : H → H is a cycle free function if

{hi(a) | 0 ≤ i < |H|} = H

for all a ∈ H.
This property cannot be verified for hash functions such as SHA1 or

ripemd160 simply because H is too large.10 Assume n is very large and the
function contains a single short cycle, the attacker can shortcut the computa-
tion by directly trying the relatively few values of that cycle. This is more likely
to succeed than brute force, because the probability is above-average that after
n iterations of h, the result gets caught in the set of cycle values.

To prevent such shortcut attacks, PBKDF2 does not simply iterate a hash
function h, but also compute a result based on its intermediate values. XORing
the intermediate values together should provide enough safety against this pos-
sible degeneration. For a discussion of the entropy degeneration of hash func-
tions see [Use01].

In addition, PBKDF2 can generate an output of arbitrary length k. The fol-
lowing function f builds on the iteration of a pseudo-random function, usually
a hash function in an HMAC setup [BCK97]. It yields the ith block11 derived

approximate numbers of atoms in the universe.
10Universal hash functions are designed to be cycle-free.
11measured in output blocks of the hash function
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from the password p, the salt s, and the iteration depth c.

f(p, c, s, i) = h1(s || i) ⊕ h2(s || i) ⊕ · · · ⊕ hc(s || i)

where hj(a) = PRF(P, hj−1(a)) and h0(a) = a.12

As you can see, the intermediate results of the iteration hc(. . . ) are XORed
together to form the result of the ith block. The final result, which is k blocks
long, is produced by the concatenation of all results for different i,

f(p, c, s, 1) || f(p, c, s, 2) || · · · || f(p, c, s, k)

5.3.3 Numbers

The naive estimation of the PBKDF2 security in the last section built on the
assumptions that technology does not evolve and that an attacker has at most
the computational resources of the user at his disposal. We will relax these
assumptions and show that the pressure on PBKDF2 comes from two sides:
(1) the relative advantage of the attacker over the user measured in PBKDF2

calculations/second, and (2) the growth of the attackers computing resources
that will occur over a longer period.

In contrast to similar models for cipher security, PBKDF2 security does not
depend on the current level of technology. As the intensity of the PBKDF2

function can be adjusted easily, the user will always choose an iteration count
that an equally equipped attacker will have to spend one second for a single
brute force trial. An attacker possessing k-times more processing resources
than the user has to spend 1

k seconds on a single trial. However, this term only
depends on the resource ratio between the attacker and the user, but not on
the absolute processing capabilities of the attacker. So, the speed with which
the attacker can compute the underlying hash function is irrelevant.

Number Crunchers and Specialisation

It is reasonable to assume that there is a gap between the processing capabilities
of a user and those of a well-funded and equipped attacker. There are two
factors that determine processing power: scale and specialisation.

“Economy of Scale” might exist in other fields, but for massive multipro-
cessing it does not apply. Adding 100% of processing capabilities to a multi-
processor system does not make it twice as fast. Additional scheduling work has
to be done, additional I/O, and additional task distribution. The homogeneity
factor is certainly below 1.

What is the upper bound one can assume for “scale”? The top rank in the
list of supercomputers13 is claimed by IBM’s BlueGene, with 72 TFLOPS14.

12hj(. . . ) also depends on p, but we have omitted the variable from the presentation, as
it is merely handed through from f to PRF.

13according to http://top500.org
14FLOPS are not suitable as base for comparisons in every aspect. For a more in-depth

treatment about the art of benchmarking, we refer the reader to [PH97]. We still use FLOPS,
as the aspects of hardware specialisation are addressed separately.

http://top500.org
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Figure 5.2: The worlds Top 500 supercomputers’ processing power

The second rank among supercomputers is held by NASA with 51 TFLOPS,
followed by the Earth Simulator deployed in Japan with 35 TFLOPS. More
data is plotted in Figure 5.2. In contrast, a Pentium 4 achieves 0.8 GFLOPS.
This is only the peak value of the P4 2.2GHz Northwood core, the average is
much lower, about 0.4 GFLOPS15. By conservative estimates, the ratio between
the user’s processing power and that of a well-funded attacker might be 1 : 106.

Most users of cryptography operate with a general purpose CPU. The Intel
architecture is the most widely used platform. What are the gains one can
expect when using custom hardware? We give three comparisons between
Intel and specialised hardware for SHA1, MD5 and AES.

SHA1 as well as MD5 belongs to the MD4-family of hash functions. An
MD4-family hash has 3 to 5 rounds, each consisting of 16 steps – except SHA1,
which has 20 steps. The members of the MD4-family are different in their
step function. The authors of [BGV96] have done a good job on optimising
every cycle out of their implementations for the MD4-family on the Pentium
architecture. The results16 are a 837 cycles/block SHA1 implementation and
a 337 cycles/block MD5 implementation.

Helion provides commercial IP cores for many cryptographic applications
on FPGAs [Hel]. They claim that their cores achieve a speed of 65 cycles/block

15http://www.tech-report.com/reviews/2002q1/northwood-vs-2000/index.x?pg=3,
http://www.tech-report.com/reviews/2001q2/pentium4-1.7/index.x?pg=4,
http://www.tech-report.com/reviews/2001q1/p4-vs-athlon/index3.x,
http://www.hardwareanalysis.com/content/reviews/article/1475.5/

16after the refinements in [Bos97]

http://www.tech-report.com/reviews/2002q1/northwood-vs-2000/index.x?pg=3
http://www.tech-report.com/reviews/2001q2/pentium4-1.7/index.x?pg=4
http://www.tech-report.com/reviews/2001q1/p4-vs-athlon/index3.x
http://www.hardwareanalysis.com/content/reviews/article/1475.5/
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for MD5 and 82 cycles/block for SHA1. A similar speed is provided by a SHA1
core on opencores.org17, which is designed to take 81 cycles/block. Another
SHA1 core is offered by HDL Design House with speed of a 80 cycles/block
along a MD5 core with a performance of 64 cycles/block.

For the Pentium architecture, Lipmaa offers a hand-optimised AES library
[Lip]. It is the fastest implementation on Intel at the time of this writing.
A block is encrypted at 254 cycles/block. The fastest FPGA implementation
presented in [EYCP00] is able to deliver an encrypted block in only 2.1 cycles.

To summarise: We found a specialisation advantage of magnitude 1:10 for
SHA1, 1:5 for MD5 and 1:100 for AES. There are real world examples of scal-
ability with magnitudes about 1 : 106. In total, an attacker might own equip-
ment that allows him to calculate PBKDF2 results 108 times faster than the
user. We call this factor, SS-factor, short for scale and specialisation.

A factor we have not mentioned yet but that is sometimes brought for-
ward as an argument: The they-had-a-larger-basement-then-we-thought factor,
or NSA factor. We leave estimates of the true processing capabilities of the
National Security Agency or other institutions to conspiracy theorists, as this
work is not the place to adopt doubtful assumptions. It is up to the user to
decide over additional security margins.

Technological Growth Model

“The future isn’t what it used to be!”

– Believed to be a comment made by an IBM executive concerning
predicted future trends in personal computing around 1992.

The quotation above is one of the many forecasting quotes18. The reason
for their diversity might be, that forecasting is such a hard thing to get right.
Nonetheless, the reader should get a feeling for the strength that is associated
with passwords secured by PBKDF2.

In our model, we assume that the user sets his password at period 0 and
stores data on disk protected with this password. An attacker gains access to
this data by some means and brute-force attacks the password. Here, tech-
nological improvement works in favour of an attacker, which can upgrade his
decryption hardware any time. In contrast, the user’s data is a cold piece of
information and the only hope of its owner is that the attacker does not find
a plausible interpretation for it. The user must anticipate this disadvantage
as well anticipate the technological growth that will happen over the longer
time frame. According to this findings, he must chose an appropriate password
length – that is password entropy.

The following growth model assumes that technology grows exponentially
with a yearly growth rate r. Let f(t) be a function that denotes how many
passwords an attacker can try in period t. For period 0, f(0) depends on his

17http://www.opencores.org/projects.cgi/web/sha_core/overview
18http://www.met.rdg.ac.uk/cag/forecasting/quotes.html

http://www.opencores.org/projects.cgi/web/sha_core/overview
http://www.met.rdg.ac.uk/cag/forecasting/quotes.html
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resource advantage over the user k and the confirmation time the user has
chosen c.

f(0) =
k

c

With a password confirmation time of one second, an attacker can try
k× 365× 24× 3600 passwords in the first year19. When technology grows with
a yearly growth rate r, we can model the processing power by the function

f(t) = f(0) ert

The integral over f(t) gives the total advantage gained over a period t with
respect to period 0.

F (t) = f(0)
∫ t

0

erx dx

If r > 0,

F (t) =
ert − 1

r
f(0) (5.5)

when r = 0,
F (t) = t f(0) (5.6)

To compute the time required for the total traversal of a password domain
with the size p, we require t to hold for p = F (t). By expressing t as a function
of p, we obtain

t =
1
r

ln
(
1 +

p r

f(0)

)
for r > 0

and

t =
p

f(0)
for r = 0

This equation gives the number of years that are required to check a password
domain with size p.

We examine five different password sets:

1. An English sentence about 40 characters long. Such a sentence is also
known as passphrase. The advantage is that it is easier to remember and
can be typed more easily. We expect 1.2 bits entropy/character, hence
|P | = 248.

2. A picture password containing 10 elements from a set of 60 pictures,
|P | = 260.

3. A random 13 character string, as generated by mkpasswd, yielding 6 bits
entropy per character, |P | = 278.

19neglecting the technological growth that happens in the first year
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password domain cardinality

technology doubles every 248 260 278 2100 2128

2 years 10−2 15 50 95 150
5 years 10−2 30 120 230 370
10 years 10−2 45 225 445 725
20 years 10−2 75 430 875 1435
no growth 10−2 365 107 1014 1023

Table 5.3: Traversal times for an entire password domain

(in years, rounded to 5 years)

4. A 11/60 picture password and a random 6 character string, |P | = 2100.

5. An entropy strong 128-bit key probably stored on a smart card.

Along, we examine five different growth scenarios:

1. Technology doubles every 2 years, r = 0.347

2. Technology doubles every 5 years, r = 0.139

3. Technology doubles every 10 years, r = 0.069

4. Technology doubles every 20 year, r = 0.035

5. No growth, r = 0

Table 5.3 has the results of all combinations of the scenarios above, assum-
ing a one second password verification and an SS-factor of 108. The growth
parameter has no influence on the security of the 248 password domain, because
there is no security at all. An equipped attacker can traverse the password do-
main in 4 days. |P | = 260 is more promising without technological growth, but
here we can clearly see the security degradation by the technological progress.
The distributed.net effort accomplished to do a key search in a 56-bit domain
in 24 hours. Would the key have been protected by PBKDF2, this would not
have been possible in such a short time frame and probably impossible without
substantial technological progress.

For the 2 years scenario, |P | = 2100 appears reasonable secure, while for
the 5 years scenario, |P | = 278 is the first with more than 100 years password
security. The results for the non-zero growth scenarios differ widely from the
no-growth scenario even compared with the most conservative 20 year doubling
scenario.

It is unlikely that an attacker finds the key by a lucky pick much earlier
than given in Table 5.3, as the majority of the computing effort happens in the
last few years. For instance, only the first half of a 2100 password space have
been searched after 93 years in the two-year doubling rate scenario.
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secure for

technology doubles every.. 50 years 100 years 250 years

2 years 78 103 178
5 years 64 74 104
10 years 60 65 80
20 years 59 61 69
no growth 57 58 59

Table 5.4: Minimum password bits for different security requirements

(calculated with SS-factor = 108)

A question the reader might want to ask: What’s a reasonable r? This is
hard to tell. There are estimations that brute forcing a 128-bit AES key is im-
possible with regular silicon based hardware simply because there is not enough
energy on this planet to power the chips. Most likely the answer depends on
the feasibility of technologies like cold fusion and quantum computers. The
best a cryptographic paper can do is to cover the most extreme and the most
conservative scenario.

Calculation |P | from t

We combine (5.5) and (5.6),

p =

{
ert−1

r f(0) if r 6= 0
t

f(0) if r = 0

and evaluate it for different t and different r values. Table 5.4 shows the results
as log2. We can use this table to read the minimum numbers of password bits,
also for different SS-factors. For every raise in the decimal power of the SS-
factor, add 3.3 bits ( log10

log2
) to the number of bits.

5.4 TKS1: Template Key Setup 1

This section intends to summarise all the findings from the previous sections
and distill a concrete design template from them. We have found that (1) pass-
word hierarchies are useful for multiple passwords, (2) anti-forensic splitting
is required for the storing revocable data, (3) PBKDF2 is an enhancement to
password security.

Figure 5.5 assembles all techniques in a single structure. As you can see,
the key is coming from a key storage because of the key hierarchy. It is stored
in an anti-forensic split way, therefore it has to be merged before it can be used.
When the password is entered correctly, the encrypted master key is decrypted
and handed to the disk cipher.
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Figure 5.5: TKS1 scheme

The salt as well as the AF-split master key is coming from a key storage.
The salt can be saved without splitting, since it is not sensitive to the security
of the system. The passphrase comes from an entropy-weak source like the
user’s keyboard input.

In the following two step-by-step listings, we presents the recovery process
and initialisation process of TKS1. In Chapter 6, you will find a more concrete
formalisation of these algorithms.

To recover the master key, we have to

1. read salt and iteration rate from key storage,

2. read the AF-split encrypted master key from storage and AF-merge in
memory to get the encrypted master key,

3. let the user enter the passphrase,

4. process the passphrase with PBKDF2 (salt and iteration as parameter)
to derive the key for the encrypted master key,

5. decrypt the encrypted master key with the derived key,

6. set up the real time cipher with the master key,

7. (destroy master key copy in memory.)

We have focused on the simplest case here. To support multiple passwords,
the process can be repeated for different key material in the key storage.

The initialisation of the system is straight forward.

1. generate a master key,

2. generate a salt for PBKDF2,
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3. choose an appropriate hash iteration rate by benchmarking the system,

4. let the user enter the passphrase,

5. process the passphrase with PBKDF2 to obtaining the key for the master
key cipher,

6. encrypt the master key with the master key cipher,

7. AF-split the encrypted master key,

8. save the AF-split encrypted master key, the iteration rate and the pass-
word salt to storage,

9. (setup the real time cipher with the master key,)

10. (destroy master key copy in memory.)

After carrying out these steps, everything is in place for a successful master key
recovery later. The benchmarking step is not stringent, but no implementor
should lock his implementation to a fixed value. The reason is the implementor
does not know on which systems his software will end up or how long his
software will be in use. The PBKDF2 iteration count must grow along with
technology. By benchmarking the user’s system and assuming that the user
has a reasonable modern hardware20, we can ensure that the iteration count
will be set appropriately.

When the user wants to change the password, the master key can be re-
covered as shown above, but instead of using it for the real time cipher, it
can be re-encrypted using a new password derived with PBKDF2. The master
key encrypted with the old password can be easily destroyed as proposed in
Gutmann’s paper [Gut96].

5.4.1 TKS2: Variant

A variant can be obtained from TKS1 by switching AF-splitting and encryp-
tion. This scheme is easier to implement when the implementor aims to reuse a
transparent hard disk encryption subsystem. This subsystem can be setup up
to encrypt and decrypt disks in a transparent way. By pairing the key encryp-
tion with a disk write, encryption and writing can be done in one step namely
by writing to a virtual partition. The transparent encryption system will then
transform the data with the encryption algorithm and write it to the backing
partition. Pairing the key writing and the key encryption requires that the AF
operation is moved to the middle of the process.

The scheme has marginally other cryptographic features than TKS1. An
attacker has more ciphertext at his disposal as compared to TKS1, because

20Reasonable modern means that you do not use your 25 MHz processor, when there are 3
GHz machines around. Next to them, using a 300MHz processor might be still an exception,
but as we have seen in the SS-factor analysis, a speed difference within magnitudes of one
power of 10 are negligible.
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Figure 5.6: TKS2 scheme

the encryption is done after data inflation. However, as the AFsplitter gener-
ates random data with high entropy, there is little chance for known plaintext
attacks here.





Chapter 6

A tour of LUKS: Linux Unified
Key Setup

The first traces of cryptography can be spotted in the Linux kernel in 2000
with the release of the patch-int kernel series. As in the year 2000 the US
export restrictions for cryptography were still believed to be a drag shoe for
US developers, this patch series was never included into the main kernel. The
first patch-int series was for the Linux 2.2 kernel, but got out of sync with the
main kernel development with the advent of the 2.4 kernel. Long after the first
version of the 2.4 kernel, two other projects stepped up: kerneli, more consent
oriented and driven by a small community, and loop-AES, a one man show.
Both projects based their hard disk encryption modules on the loopback de-
vice driver, which was already present in the kernel. Traditionally, the losetup
tool was used to manage loopback devices. But the maintainer of util-linux, to
which losetup belonged, refused to include third party modification to losetup,
and both projects, kerneli and loop-AES, started to distribute their own ver-
sion of util-linux. Both projects matured and took separate ways in terms of
features, and so their util-linux modifications became incompatible with each
other.

Both of them coexisted for a while, and unfortunately some Linux distribu-
tions started to include one of the modified versions, while other distributions
included the other one. So, an unpleasant situation arose for end users. Having
encrypted a partition with one Linux distribution, the user was not sure if he
could access the partition with another distribution.

The incompatibility originated from the key processing that is done inside
losetup. The user supplies a passphrase, from which the actual key is derived
via hashing and further handed to the kernel. As new features were added to
kerneli and loop-AES projects, losetup needed to understand these features in
order to activate them in the kernel. The situation became particularly bad,
when cryptoloop of kerneli was included in the 2.6 release of the Linux kernel,
but no official version was around to use this kernel facility. With util-linux
2.12, its maintainer wrote his own implementation to handle encryption. It was

101
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neither compatible with kerneli nor loop-AES and added a third incompatible
implementation into the bargain. The result were frustrated user postings to
the development mailing lists.

The situation was partially remedied by cryptsetup. cryptsetup was an
equivalent to losetup but instead for cryptoloop it was used for dm-crypt,
another kernel facility for hard disk encryption. With cryptsetup, a unified
tool was created especially for the purpose of processing user keys. But again,
distributions decided to take their own approaches and started to manage dm-
crypt volumes with the low-level tool dmsetup. Also cryptsetup took a number
of parameters to set key size, hash algorithm and other options. This options
setting would have to be remembered, because other settings would result in
differently key and an unaccessible partition.

To remedy this problem, the author of this work developed a meta data
format to save all information required for the key setup. But while writing
the standard documents, he noticed that the set of information that needed to
be saved could only be surveyed, if the key setup process was specified. This
lead to the question, what is a secure key setup?

The answer to this question is given in Section 5.4. TKS1 is a byproduct
of the standardisation efforts for LUKS. TKS1 is a template design for the key
setup process, and includes all ingredients necessary to provide a high level of
safety for managing keys on regular user hardware.

After all theoretic prerequisites have been arranged, a proof-of-concept im-
plementation was released in summer 2004. Thanks to much user feedback,
LUKS hit 1.0 in March 2005. The final 1.0 version switched to the equally
secure TKS2 variant for implementation reasons.

Along with the 1.0 version of the reference implementation, the LUKS on-
disk format specification 1.0 [Fru05] was released. With this document, LUKS
not only standardises meta data syntax, but also its semantics to ensure com-
patibility among implementations. Defining the semantics of descriptor tokens
effectively standardises the whole disk encryption. Thus, LUKS is a complete
hard disk encryption standard.

The advantages of LUKS are

• compatibility via standardisation,

• secure against low entropy attacks thanks to PBKDF2,

• support for multiple keys by using a key hierarchy,

• effective passphrase revocation thanks to AFsplitter,

• free reference implementation, GNU Public License.

6.1 Disk layout

A LUKS disk has the following layout:
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field name description

magic magic for LUKS partition header
version LUKS version
cipher-name cipher name specification
cipher-mode cipher mode specification
hash-spec hash to use in HMAC mode for all PBKDF2 operations
payload-offset start offset of the bulk data (in sectors)
key-bytes number of key bytes
mk-digest master key checksum from PBKDF2

mk-digest-salt salt parameter for master key PBKDF2

mk-digest-iter iterations parameter for master key PBKDF2

uuid UUID of the partition
key-slot-1 key slot 1
key-slot-2 key slot 2
. . . . . .
key-slot-8 key slot 8

Table 6.1: PHDR layout

LUKS phdr KM1 KM2 . . . KM8 bulk data

A LUKS partition starts with the LUKS partition header (phdr). TKS2
is built as two level key hierarchy that demands for a key storage area. En-
crypted and anti-forensic processed copies of the master key are stored in the
key material sections labelled KM1, KM2, . . . , KM8 in the figure. After the
key material, the bulk data is located, which is encrypted by the master key.
The phdr together with an active key material section contains all necessary
information needed by the encryption subsystem to access the bulk data.

6.1.1 The partition header

The first data items of the phdr are designated for the bulk data encryption
subsystem: the used cipher, the cipher mode, the bulk data offset, the master
key size. The second part is used for the verification of master key candidates: a
master key digest and the PBKDF2 parameters for digest generation. A UUID
is also stored, so partitions on mobile disks such as USB sticks can be recognised
and paired with their passphrases automatically. Table 6.1 summaries the
content of the phdr.

The cipher and cipher mode settings are those to use for the bulk data
associated with a LUKS partition. The underlying encryption system must
support these settings, of course. To ensure compatibility, the specification
document [Fru05] maintains a registry of tokens to use for cipher names, cipher
mode names and hash names. The registry also includes normative information
or references to other normative documents for such tokens. Because of this,
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field name description

active state of key slot, enabled/disabled
iterations iteration parameter for PBKDF2

salt salt parameter for PBKDF2

key-material-offset start sector of key material
stripes number of anti-forensic stripes

Table 6.2: Key slot layout

every aspect of a LUKS partition becomes well-defined, i.e. LUKS is a complete
standard.

Also included in the phdr is a digest of the master key. This is used for
password verification. To generate the digest, the PBKDF2 primitive is reused
and the PBKDF2 parameters such as salt and iteration count are stored in the
phdr. Usually, the iteration count is much lower than for password protection,
since the master key is generated from an entropy-strong source and does not
make a good target for brute force attacks. Attacking the bulk data directly is
more promising.

The key-slot is an aggregate data item containing the fields depicted in Ta-
ble 6.2. A key slot refers to a copy of the master key keyed with a password or
key file. A key slot contains information about the PBKDF2 processing param-
eters (salt, iteration count) and the anti-forensic processing (stripe numbers).
The key material offset points to the key material section associated with this
key slot. The key material contains the raw binary data representing an in-
flated encrypted master key. The phdr contains 8 key slots, hence there are
also 8 key material sections on a partition.

Every active key slot is locked by an individual password. The user may
choose as many passwords as there are key slots. To access a partition, the user
has to supply only one of these passwords. The unlocking process is described
in the next section.

6.2 Semantics

Having discussed all data structures, we would like to see them in action. In
the following section, the terms password, passphrase or key file can be used
interchangeable, as LUKS does not make a difference between them. LUKS
features 4 essential high-level commands,

create partition: initialise an empty partition with a new master key, and
set an initial passphrase.

open partition: recover the master key with the help of a user supplied
passphrase, and install a new virtual mapping for the backing device.

add key: add a new passphrase to a key slot. A valid passphrase has to be
supplied for this command.
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revoke key: disable an active passphrase.

These high level actions are suitable to be made available to the end user.
For presentation and implementation reasons, it is better to think of some of
these high level actions as an aggregation of low level actions:

pre-create partition: generate a new master key and a new valid phdr, and
write the phdr with no key slot active.

set key: use a given copy of the master key to activate an empty key slot with
a new user supplied passphrase.

recover master key: given a user passphrase, try to recover the master key
from an active key slot.

We separate the high level action of create partition into two parts: pre-
create partition and set key. The pre-creation step is responsible for initialising
the phdr, generating the master key and the disk layout. After this step, the
key slots are all empty, and the partition would be unusable if the process
would stop here. Hence, a set key step is carried out with the master key still
in memory to activate a key slot.

Equally, the add key step is separated into recover master key and set key
step. The master key recovery has to be done with an existing valid passphrase
to bring a copy of the master key into memory. Then, an empty key slot is
used in the set key low level action to be filled with another copy of the master
key keyed with the new passphrase.

The open partition consists only of the recover master key low level action
followed by the installation of a new virtual partition into the operating system
device layer1.

Other high level commands can be synthesised. Password changing is the
aggregation of add key with the new passphrase followed by revoke key for the
old one. The following presentation is not as detailed as the LUKS specification,
and shortened for the sake of better readability. Implementors should consult
[Fru05].

6.2.1 Partition pre-creation

This action is responsible for generating a valid phdr. The procedure depicted
in Listing 6.3 starts with the master key generation. The master key’s size is
chosen as requested by the user (Lines 1-2). The phdr is initialised (Lines 5-10)
with the variables supplied by the user, and a digest for the new master key is
computed and stored in the phdr (Lines 12-18). The master key digest will be
used later to check a master key candidate for validity.

Listing 6.3: Partition initialisation
masterKeyLength ← de f ined by user

1not depicted here, because beyond the scope of this document
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2 masterKey ← read from random source ,
l ength masterKeyLength

4
phdr . magic ← LUKS MAGIC

6 phdr . v e r s i on ← 1
phdr . c ipher−name ← as supp l i ed by user

8 phdr . c ipher−mode ← as supp l i ed by user
phdr . key−bytes ← masterKey

10 phdr . uuid ← generate uuid

12 phdr .mk−d ige s t−s a l t ← read from random source ,
l ength : LUKS SALTSIZE

14 phdr .mk−d ige s t−i t e r a t i o n−count ← LUKS MKD ITER or user input
phdr .mk−d i g e s t ← PBKDF2( masterKey ,

16 phdr .mk−d ige s t−s a l t ,
phdr .mk−d ige s t−i t e r a t i o n−count ,

18 LUKS DIGESTSIZE)
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20 s t r i p e s ← LUKS STRIPES or user de f i ned

keyMate r i a lSec to r s ← d stripes∗masterKeyLength
SECTOR SIZE

e
22 cu r r en tO f f s e t ← d size of phdr

SECTOR SIZE
e

24 for each key s l o t in phdr do as ks {
ks . a c t i v e ← LUKS KEY DISABLED

26 ks . s t r i p e s ← s t r i p e s
ks . key−mater ia l−o f f s e t ← cu r r en tO f f s e t

28 cu r r en tO f f s e t ← cu r r en tO f f s e t + keyMate r i a lSec to r s
}

30
phdr . payload−o f f s e t ← cu r r en tO f f s e t

32
wr i t e phdr to d i sk

The rest of the procedure takes care of generating the disk layout. The AF
inflation factor ( s t r i p e s ) is determined, and used to calculate the size of a
single key material section. The key material sections have to be aligned to
sector boundaries, as the key−mater ia l−o f f s e t field’s unit is sectors. Then,
a loop assigns a sector region to every key slot (Lines 24-29). The bulk data
starts after the last key material section.

6.2.2 Key setting

The more interesting part is how keys are activated. In Listing 6.4 it is assumed
that a copy of the master key is in memory. How a master key can be brought
to memory from an active key slot is described in the next section.

After the user passphrase is read, the parameters for PBKDF2 are deter-
mined. Good security requires an appropriate number of PBKDF2 iterations.
The iteration count is chosen, so that the password verification takes the num-
ber of intended seconds. The longer a password verification takes, the harder
brute-force attacks will be, see Section 5.3. The salt is generated randomly
before the PBKDF2 processing takes place (Lines 8-14). We follow the de-
sign guidelines of TKS2, and inflate the master key by using the AF splitting
technique. The result is of size masterKeyLength × s t r i p e s (Lines 16-19).

The split master key is encrypted with the PBKDF2 processed password
(Line 21). Notice that the key material is encrypted with exactly the same
encryption settings as the bulk data, and the same cipher, cipher mode and
key size is used. This is because the master key has to be protected at an equal
strength as the bulk data. This seems reasonable, as the master key in turn
protects the bulk data, hence its encryption must not be the weakest link in
the security construction.

Finally, the encrypted and split master key is written to disk, the key slot
is flagged active, and the phdr is updated.
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Listing 6.4: Key setting
masterKey ← must be available, either because it is still in memory from the

pre-creation action or because it has been recovered by a correct
password.

2 masterKeyLength ← phdr . key−bytes

4 emptyKeySlotIndex ← find inactive key slot index in phdr by scanning the
keyslot.active field for LUKS KEY DISABLED

key s l o t ks ← phdr . k e y s l o t s [ emptyKeySlotIndex ]

6 password ← read password from user input
ks . s a l t ← read from random source , l ength LUKS SALTSIZE

8 PBKDF2−IPS ← benchmark system // iterations per seconds
ks . i t e r a t i o n−count ← PBKDF2−IPS ×

10 intentedPwdCheckingTime // in seconds
pwd−PBKDF2ed ← PBKDF2( password ,

12 ks . s a l t ,
ks . i t e r a t i o n−count ,

14 masterKeyLength ) // key size is the same as
for the bulk data

16 sp l i tKey ← AFspl i t ( masterKey , // source
masterKeyLength , // source length

18 ks . s t r i p e s ) // multiplication factor
spl i tKeyLength ← masterKeyLength × ks . s t r i p e s

20
encryptedKey ← encrypt ( phdr . c ipher−name , // cipher name

22 phdr . c ipher−mode , // cipher mode
pwd−PBKDF2ed, // key

24 sp l i tKey ) // content

26 wr i t e to p a r t i t i o n ( encryptedKey , // source
ks . key−mater ia l−o f f s e t , // sector number

28 spl i tKeyLength ) // length in bytes

30 ks . a c t i v e ← LUKS KEY ACTIVE // mark key as active in phdr

32 update k ey s l o t ks in phdr
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6.2.3 Master key recovery

The initial requirements for a key recovery action are a user password and a
valid LUKS phdr (Lines 1-5). As we have seen in the previous action, the mas-
ter key is AF-split, and stored encrypted by a PBKDF2 processed password. To
recover it, the process has to be reversed. First, we need a PBKDF2 processed
version of the user passphrase. So, PBKDF2 is called with the parameters found
in the key slot (Line 8). The result is used to decrypt the split master key (Line
16). After an AF-merge operation, a possible master key has been recovered
(Line 21). The master key candidate is checked against the master key digest
already stored in the phdr (Lines 25-29). If the candidate’s digest matches,
the process stops and a valid master key is handed to the caller. If not, the
checking is repeated for all other active key slots.

Listing 6.5: Master key recovery

read phdr from di sk
2 check LUKS MAGIC and ve r s i on number in phdr

4 pwd ← read password from user input
masterKeyLength ← phdr . key−bytes

6
for each a c t i v e k ey s l o t in phdr do as ks {

8 pwd−PBKDF2ed ← PBKDF2(pwd ,
ks . s a l t ,

10 ks . i t e r a t i o n−count
masterKeyLength )

12 encryptedKey ← read from pa r t i t i o n at
ks . key−mater ia l−o f f s e t and length

14 masterKeyLength × ks . s t r i p e s

16 sp l i tKey ← decrypt ( phdr . c ipher−name ,
phdr . c ipher−mode ,

18 pwd−PBKDF2ed, // key
encryptedKey ) // content

20
masterKeyCandidate ← AFmerge ( sp l i tKey ,

22 masterkeyLength ,
ks . s t r i p e s )

24
cand idateDiges t ← PBKDF2( masterKeyCandidate ,

26 phdr .mk−d ige s t−s a l t ,
phdr .mk−d ige s t−i t e r ,

28 LUKS DIGEST SIZE)
i f cand idateDiges t = phdr .mk−d i g e s t :

30 break loop and return masterKeyCandidate as
c o r r e c t master key

32 }
return e r ror , password does not match with any key s l o t
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6.2.4 Key revocation

This actions is quite simple. The key material section holding a copy of the
master key is clear according to Gutmann, and the corresponding key slot is
flagged disabled.

Peter Gutmann has shown in [Gut96], how data destruction shall be done
to maximise the chance that no traces are left on the disk. All LUKS imple-
mentations are required to follow Gutmann’s advice.

6.3 LUKS for dm-crypt

LUKS is not just a paper tiger. It is an existing and usable hard disk solution.
The pseudo code presented in the previous section is implemented in crypt-
setup. Unfortunately, the maintainer Christophe Saout has not found time yet
to include the LUKS extensions for cryptsetup in the main branch of crypt-
setup. So, the author of this work draw the conclusion and forked cryptsetup.
The LUKS enabled branch is available from http://luks.endorphin.org.

At the time of this writing, cryptsetup-luks is packaged for the Linux dis-
tributions Gentoo, Debian and Redhat. Gentoo has the best LUKS support,
and manages to be installed and booted from a root file system residing on a
LUKS partition.

cryptsetup-luks implements all actions described in this section. To fa-
cilitate shell scripting, trivial actions like LUKS partition detection or UUID
extraction are also implemented.

http://luks.endorphin.org
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Mathematical supplements

This Mathematica Notebook is intended as addition to ”New Methods of Hard
Disk Encryption”.

CBC collision attack

This section presents the mathematics behind Chapter 4. The question whetever
a sample out of a finite domain contains duplicate items is an elementary prob-
lem. As argued in Chapter 4, the probability that a sample with k elements
out of a set with n elements is collision-free is:

In[1]:= g[n ,k ] :=
n!

(n-k)!

nk

This representation is ok for small values of n and k. But as we are investi-
gating large n

(
around 2128

)
and large k

(
around 1012 − 1015

)
, Mathematica

cannot carry out the factorial computation. For large n and k, we replace it
by Stirling’s estimate,

In[2]:= Stirling[n ] :=
0

2Π nI
n
ã
M

n

In[3]:= g[n,k]/.{n! ® Stirling[n],(n - k)! ® Stirling[n - k]}

Out[3]= ã-k n
1
2 -k+n (-k + n)-

1
2 +k-n

This can be simplified, when rewritten as logarithm. Mathematica’s FullSimplify
function comes to hand using the assumption, that n and k are positive inte-
gers.

In[4]:= collAssumpt = {{k,n} Ε Integers, k > 0,n > 0};

In[5]:= FullSimplify[Log[ã-kn
1
2 -k+n(-k + n)-

1
2 +k-n],Assumptions ® collAssumpt]

Out[5]= -k + LogAJ1 -
k

n
N

-
1
2 +k-n

E

We have to express one more constraint for k. When we have k > n there
must be a collision, as the set N contains n elements and after n = k the set
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is exhausted for unique picks. The collision probability is 1 for k > n. We
concentrate on 0 < k < n, as this is more interesting. Adding this assumption,
we simplify the expression a bit further.

In[6]:= collAssumpt = Append[collAssumpt,n > k > 0];

In[7]:= FullSimplify[-k + Log[J1 -
k
n
N

-
1
2 +k-n

],Assumptions ® collAssumpt]

Out[7]= -k + J -
1

2
+ k - nN LogA1 -

k

n
E

The logarithm’s argument 1 − k
n is a term very close to 1. A floating point

representation will quickly fail here. Therefore, we replace the logarithmic
expression by its corresponding Taylor series.

In[8]:= Series[Log[1 - x],{x,0,5}]

Out[8]= -x -
x2

2
-
x3

3
-
x4

4
-
x5

5
+ O[x]6

The expression becomes (omitting the rest term 0[x]6),

In[9]:= -k + J -
1
2
+ k - nNNormal[%]/.x ®

k
n

Out[9]= -k + K -
k5

5 n5
-

k4

4 n4
-

k3

3 n3
-

k2

2 n2
-
k

n
O J -

1

2
+ k - nN

We can now given an estimate of g[n,k] that is easily computable for large
n and k,

In[10]:= h[n ,k ] := ã
-k+I- k5

5 n5
-

k4

4 n4
-

k3

3 n3
-

k2

2 n2
-
k
nM (-

1
2 +k-n)

Let us compare the two variants,

In[11]:= {g[10000,100],h[10000,100]} //N

Out[11]= {0.608566,0.608566}

With h we obtained a function that can be evaluated for bigger n and k without
the dangling sword of Damocles impersonated by over- and underflows. Let us
investigate n = 2128and k = 1012, which is roughly equivalent to a 200 GB
hard disk running with AES and CBC in plain-IV mode.

In[12]:= N[h[2128,10ˆ12] ,25]

Out[12]= 0.99999999999999853063206

This is the collision free probability. On first glance, it appears to be very
unlikely that a collision occurs. To verify this, we rewrite this as collision
probability, which states the magnitudes a bit better,

In[13]:= 1 - h[2128,10ˆ12] //N

Out[13]= 1.44329 ´ 10-15

Let us investigate this function for a set of values for k.

In[14]:= 1 - h[2128,{1013,1014,1016,1018,1019,1020}] //N

Out[14]= {1.46883´10-13,1.46937´10-11,1.46937´10-7,0.00146829,0.136651,1.}
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As you can see, the collision probability sharply increases at 1019. That is
far below the size of set N , which is approximately 1038. A plot reveals more
features of the function,

In[15]:= << Graphics‘Graphics‘

In[16]:= LogLinearPlot[1 - h[2128,Floor[x]],{x,1015,1020},

PlotLabel ® 1 - h[2128]]

1. ´ 10 15 1. ´ 10 16 1. ´ 10 17 1. ´ 10 18 1. ´ 10 19 1. ´ 10 20

0

0.2

0.4

0.6

0.8

1

1-h@2128 D

Out[16]= -Graphics-

The point with the biggest rise of the collision probability is called inflexion
point. From the plot above, we can deduce it to be near 2× 1019. But we can
deduce this point algebraically by considering the second derivative.

In[17]:= h¢¢[n ,k ] = D[1 - h[n,k],{k,2}] ;

In[18]:= Plot[h¢¢[2128,Floor[x]],{x,1018,1020}]
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2 ´ 10 19 4 ´ 10 19 6 ´ 10 19 8 ´ 10 19 1 ´ 10 20

-1 ´ 10 -39

1 ´ 10 -39

2 ´ 10 -39

3 ´ 10 -39

Out[18]= -Graphics-

We use FindRoot to find nulls in this function. We will see why it is reasonable
to start with

√
2128 later.

In[19]:= FindRoot[h¢¢[2128,k],{k,
0

2128},WorkingPrecision ® 20]

Out[19]= {k ® 1.844674407370955162 ´ 1019}

But in fact, our hint for
√

2128 as start value was perfect. Notice that

In[20]:=
0

2128//N

Out[20]= 1.84467 ´ 1019

This is equal to our result for k. The explanation for this is given in Chapter
4. The probability at k = 264 is

In[21]:= h[2128,264] //N

Out[21]= 0.606531

In[22]:= Clear[f]; Clear[p]; Clear[g] ; Clear[h]

Tech-Growth Model

This model is used in Chapter 5 to estimate the security of PBKDF2 protected
passwords. In this section, P denotes the set of passwords, and its cardinality,
|P |, is denoted by p. We assume that c describes the processing power at
the beginning of the first period. Assuming that the user chooses 1 second
password confirmation time, 365 24 3600 passwords can be checked in the first
period (without technological growth). This makes c = 1/(365 24 3600). k is
the SS-factor, the ratio between the user’s processing power and the attackers
processing power.
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Let f(t) be a function that describes the number of passwords that can be
computed in the time frame t until t + 1.

In[23]:= f[t ,r ,c ] :=
k
c
ã
r t

The value computed by f(t) is only a projection for the period t. It neglects
the technological growth that will happen in period t. The real number of
passwords computed is between f(t) and f(t+1), when the technological growth
rate is larger than 0. Integrating this function obtains the overall number of
passwords computed in a given time frame.

In[24]:= F[t ,r ,f0 ] = f0à
t

0
ã
r x
âx

Out[24]=
(-1 + ãr t) f0

r

We define the special case r = 0,

In[25]:= F[t ,0,f0 ] = f0 t;

Given the number of passwords p, we can solve this equation by demanding
p == F (t) for t. This gives an explicit equation for t, that means after t years,
the whole password domain will have been traversed and hence, the correct
password must have been found.

In[26]:= Solve[p ==
(-1 + ãr t)

r
f0,t][[1]] //Simplify

Out[26]= 9t ®
LogA1 + p r

f0
E

r
=

For r > 0, we use this solution

In[27]:= t[r , p ,f0 ] =
Log[1 + p r

f0 ]

r
;

But for r = 0, the solution of the integral F [t] becomes f0 t. Hence, t = p
f0

.

In[28]:= t[0, p , f0 ] =
p
f0
;

We define the function r[y] that gives the respective growth rate, when the
technology level doubles every y years.

In[29]:= r[y ] :=
Log[2]

y

Reserving one second for password confirmation and assuming an SS-factor of
108, 365 24 3600 108passwords can be tried in the first period. We will use this
value for f0.

In[30]:= f0
¢
= 365 24 3600 108;

Using the Outer function, we generate all combinations of the scenarios we
have chosen,

In[31]:= resT = Outer[t,{r[2],r[5],r[10],r[20],0},

{2ˆ37,2ˆ48,2ˆ60,2ˆ78,2ˆ100,2ˆ128},

{f0
¢
}] //N;
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and split the result into two tables (for formatting reasons),

In[32]:= TableForm[Rows[resT,{1,2,3}],

TableHeadings ®

{{"2 years","5 years","10 years","20 years","no growth"},

{"2ˆ37","2ˆ48","2ˆ60"}}]

Out[32]=

2ˆ37 2ˆ48 2ˆ60
2 years 0.0000435813 0.0879025 13.9933
5 years 0.0000435815 0.0887074 28.4579
10 years 0.0000435815 0.0889802 47.1922
20 years 0.0000435816 0.0891174 75.4596
no growth 0.0000435816 0.0892551 365.589

In[33]:= TableForm[Rows[resT,{4,5,6}],

TableHeadings ®

{{"2 years","5 years","10 years","20 years","no growth"},

{"2ˆ78","2ˆ100","2ˆ128"}}]

Out[33]=

2ˆ78 2ˆ100 2ˆ128
2 years 49.9706 93.9706 149.971
5 years 118.317 228.317 368.317
10 years 226.634 446.634 726.634
20 years 433.268 873.268 1433.27
no growth 9.5837 ´ 107 4.01969 ´ 1014 1.07903 ´ 1023

We can use the function F[t,r, f0]to analyse how big the password domain
has to be, if we requried passwords to be secure for 50, 100 or 250 years.

In[34]:= resP = Log[2,Outer[F,{50,100,250},{r[2],r[5],r[10],r[20],0},

{f0
¢
}]]//N;

In[35]:= TableForm[Transpose[resP],TableHeadings ®

{{"2 years","5 years","10 years","20 years","no growth"},

{"50 years","100 years","250 years"}}]

Out[35]=

50 years 100 years 250 years
2 years 78.0147 103.015 178.015
5 years 64.3352 74.3366 104.337
10 years 60.2908 65.3352 80.3366
20 years 58.556 61.2908 68.8364
no growth 57.1298 58.1298 59.4517
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